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Executive	Summary	
	

The	high	mortality	and	the	rates	of	disability	make	stroke	a	tremendous	medical	and	socio-economic	
burden	in	Europe.	
Precision	medicine	promises	highly	improved	stroke	outcome	and	better	treatment.	However,	for	the	
lately	introduced	new	stroke	treatment,	mechanical	thrombectomy	(MT),	precision	medicine	is	largely	
untapped.	 First,	 precision	 medicine	 approaches	 need	 to	 follow	 current	 best	 practice	 guidelines,	
otherwise,	their	predictive	value	is	highly	limited.	In	stroke,	this	means	that	predictive	modelling	for	
precision	medicine	needs	to	be	performed	with	current	MT	data.	Most	available	databases,	however,	
stem	from	the	pre-MT	era.	Also,	modern	machine	learning	approaches	need	to	be	able	to	incorporate	
data	from	multiple	sources	in	different	formats.	For	the	best	performing	algorithms	like	deep	learning,	
we	need	 to	 tailor	 specific	 architectures	 -	 so-called	multistream	architectures	 -	which	 can	 integrate	
different	inputs	into	one	predictive	model.		
Further,	prediction	models	need	to	be	able	to	extract	the	necessary	features	automatically	from	the	
given	data.	Decision	support	systems	integrated	into	the	clinical	workflow	cannot	rely	on	any	manual	
input.	Moreover,	it	is	important	to	consider	that	precision	medicine	approaches	will	be	used	for	every	
patient.	however,	it	is	known	that	study	data	does	not	necessarily	represent	the	population	of	real-
world	patients	due	to	constraints	like	the	need	for	formal	consent,	specific	populations	frequenting	
university	hospitals	and	others.	It	is	important	to	show	the	capacity	of	predictive	models	to	maintain	
their	predictive	performance	in	cohorts	of	real-world	data.	Lastly,	the	label	used	must	be	informative	
for	patients	and	capture	patient-centred	quality-of-life	(QoL)	measures	which	are	relevant	for	patients.	
Here,	research	into	new	QoL	measures	as	outlined	in	the	goals	of	P4Q	is	warranted	and	should	involve	
patient-reported	outcomes.	Thus	we	will	perform	P4Q-AS	 to	 tackle	 these	 shortcomings	and	collect	
current	MT	treatment	data	to	pave	the	way	for	precision	medicine	in	stroke	treatment.		
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1. 	Rationale	for	the	Acute	Stroke	Study	within	P4Q	
	

Ischemic	stroke	is	the	death	of	brain	tissue	due	to	the	sudden	lack	of	blood	supply.	Most	strokes	are	
the	result	of	sudden	obstruction	of	brain	vessels	by	a	blood-clot,	i.e.	thromboembolism.	Approximately	
900.000	Europeans	suffer	an	ischemic	stroke	each	year(Béjot	et	al.,	2016).	About	25%	of	men	and	20%	
of	women	can	expect	to	suffer	a	stroke	if	they	live	to	be	85	years	old(Meairs	et	al.,	2006).	The	overall	
mortality	of	stroke	is	up	to	30%(Béjot	et	al.,	2016)	making	stroke	a	leading	cause	of	death	in	developed	
countries.	Moreover,	up	to	half	of	the	surviving	patients	remain	permanently	disabled(Hankey,	2003).	
The	high	mortality	and	the	rates	of	disability	due	to	stroke	make	it	a	tremendous	medical	and	socio-
economic	burden	in	Europe.	
	

1.1. Ischemic	 Stroke	 Types	 and	 Pathophysiology	 of	 Stroke	
(Progression)	

Three	 major	 types	 of	 ischemic	 stroke	 can	 be	 distinguished:	 Cardio-embolic	 stroke,	 large	 vessel	
atherosclerotic	 stroke	 and	 lacunar	 stroke.		
Cardio-embolic	 stroke	 is	 most	 commonly	 caused	 by	 atrial	 fibrillation,	 although	 other	 causes	 like	
endocarditis	are	possible.	Large	vessel	atherosclerosis	as	the	cause	leads	to	the	occlusion	of	a	large	
brain	 vessel	 by	 a	 local	 thrombotic	 process	 (in	 contrast	 to	 embolism).	 Lastly,	 lacunar	 stroke	 is	 the	
occlusion	of	a	small	penetrating	brain	vessel,	which	is	attributed	to	local	vessel	wall	damage	through	
lipohyalinosis.		

In	all	stroke	types,	the	occlusion	of	the	blood	vessel	leads	to	the	death	of	neurons	in	grey	matter	due	
to	 the	 lack	of	oxygen	 leading	 to	a	cascade	of	 intracellular	 reactions	due	 to	 lack	of	ATP.	Briefly,	 the	
cascade	is	characterized	by	ionic	imbalance,	neurotransmitter	release	and	inhibition	of	reuptake(Xing	
et	al.,	2012).	Here,	mainly	glutamate	plays	a	role,	where	glutamate	leads	to	calcium	influx,	which	in	
turn	promotes	excessive	sodium	and	water	influx	leading	to	the	so-called	cytotoxic	edema.	Cell	death	
is	 induced	by	damage	 to	cell	organs	by	calcium	and	by	oxygen	 radicals	produced	by	mitochondrial	
production.	Lately,	also	cortical	spreading	depression	was	linked	to	damage	in	stroke(Lauritzen	et	al.,	
2011).		

Depending	on	 the	 stroke	 type,	 smaller	 or	 larger	 areas	of	 the	brain	 are	 affected.	 In	 lacunar	 stroke,	
strokes	are	small	-	so-called	lacunar	lesions.	This	is	explained	by	the	fact	that	the	affected	penetrating	
brain	vessels	are	small	and	usually	only	one	 is	affected.	 In	embolic	or	 local	 thrombotic	stroke,	also	
called	territorial	stroke,	the	size	of	the	affected	area	is	dependent	on	the	localisation	of	the	blood-flow	
blocking	 thrombus	 -	 proximal	 occlusions	 leading	 to	 larger	 affected	 areas	 -	 	 and	 the	 amount	 of	
collaterals(Leng	 et	 al.,	 2016).	 Here,	 complete	 infarctions	 of	 whole	 vessel	 territories	 and	 even	
hemispheres	 can	 occur	 which	 are	 termed	 ‘malignant	 infarction’	 due	 to	 their	 catastrophic	
outcomes(Hacke	et	al.,	1996).	

Stroke,	however,	 is	not	a	static,	but	rather	a	dynamic	process.	Animal	and	early	positron-emission-
tomography	(PET)	studies	have	suggested	the	“penumbra”	model	of	acute	ischemic	stroke(Sobesky,	
2012).	The	penumbra	model	includes	that	the	final	infarction	is	determined	by	the	severity	and	by	the	
duration	of	the	ischemia.	Here,	stroke	is	characterized	by	an	early	core	of	infarction	where	neurons	die	
quickly	 in	 the	course	of	minutes	and	no	therapeutic	 intervention	 is	possible.	This	core,	however,	 is	
surrounded	by	neurons	in	a	dormant	state,	coined	the	penumbra.	In	this	penumbra	region,	neurons	
are	in	a	state	which	is	characterized	by	reduced	blood	flow	which	is	sufficient	to	prevent	death	in	the	
near	future	but	does	not	allow	normal	function	of	the	cells.	This	state	cannot	be	maintained	forever,	
however,	and	over	time	the	core	spreads	until	also	 in	the	penumbra	regions	the	neurons	die.	How	
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much	of	the	penumbra	is	 lost	this	way,	 is	highly	 influenced	by	the	grade	of	collateral	flow,	 i.e.	how	
much	blood	reaches	the	penumbra	via	 indirect	routes.	Collateral	 flow	shows	high	variance	and	it	 is	
established	that	higher	collateral	grades	are	associated	with	lower	penumbral	loss	and	better	tissue	
fate(Bang	et	 al.,	 2008;	 Jung	et	 al.,	 2013).	While	 stroke	progression	 can	be	 very	quick,	 especially	 in	
malignant	stroke,	persisting	penumbral	tissue	has	been	proven	to	exist	up	until	48	hours(Heiss	et	al.,	
1992).		

These	results	together	newer	results	from	randomized	studies,	however,	imply	that	the	steady	loss	of	
neuronal	tissue	might	not	the	norm	for	stroke	patients(von	Kummer,	2019).	Rather,	it	is	thought	that	
there	exists	a	stroke	population	with	stable	conditions	which	will	benefit	from	stroke	treatment	many	
hours,	even	days	after	the	stroke(von	Kummer,	2019).	

The	 best	 outcome	 for	 the	 tissue	 can	 be	 achieved	 by	 recanalization	 of	 the	 vessel	 with	 following	
reperfusion	of	the	tissue.	This	can	sometimes	happen	spontaneously,	but	it	is	naturally	the	goal	of	the	
causal	acute	ischemic	stroke	treatment	options	which	are	discussed	in	the	following.		

	

1.2. Acute	Stroke	Treatment	
	

The	goal	of	 all	 causal	 stroke	 treatment	 is	 recanalization,	 i.e.	 the	 re-opening	of	 the	 vessel,	which	 is	
occluded	 by	 the	 thrombus,	 and	 following	 reestablishment	 of	 the	 blood	 flow	 with	 reperfusion.	 In	
current	practice,	first	always	neuroimaging,	either	CT	or	MRI,	is	performed	to	rule	out	haemorrhage.	
Then,	 two	 different	 treatment	 options	 exist.	 One,	 the	 dissolution	 of	 the	 blood	 clot	 using	 i.v.	
transcombinant	plasminogen	activator	 (t-PA).	Two,	 the	mechanical	 removal	of	 the	blood	clot	using	
intra-arterial	mechanical	devices.		

	

1.3. Status	of	i.v.-Thrombolysis	
Extensive	research	has	been	performed	on	i.v.	thrombolysis	using	t-PA	until	today.	Here,	we	will	not	
reiterate	this	research	in	detail.	Rather,	we	will	summarize	the	current	status-quo	for	the	use	of	i.v.-t-
PA.	T-PA	catalyzes	the	reaction	from	plasminogen	to	plasmin	which	is	the	strongest	agent	for	blood	
clot	breakdown.	Current	guidelines(Powers	William	J.	et	al.,	2018)	allow	the	usage	of	i.v.	t-PA	within	
4.5	hours	after	established	stroke	onset.	After	4.5	h,	the	number-needed-to-treat	(NNT)	drops	below	
the	 number-needed-to-harm	 (NNH),	 e.g.	 by	 secondary	 bleeding,	 and	 general	 therapy	 of	 all	 stroke	
patients	is	not	recommended.	It	is	important	to	mention	that	the	NNT	decreases	with	time	from	stroke	
onset.	For	a	patient	with	a	good	outcome,	in	the	first	90	minutes	4-5	patients	need	to	be	treated.	After	
more	than	230	minutes,	the	NNT	drops	to	1:14.		

It	is	important	to	mention	that	i.v.	t-PA	is	given	here	according	to	the	so-called	time-clock	paradigm.	
This	means	that	only	the	clinical	status,	as	well	as	contraindications	and	the	time	from	stroke-onset,	
are	taken	into	account	when	deciding	on	initiation	of	the	therapy.	Whether	the	patient	has	or	does	
not	have	any	salvageable	penumbra,	is	not	established.	Treatment	selection	strategies	are	discussed	
in	1.5.	

1.4. Status	of	Mechanical	Thrombectomy	
After	several	successful	studies	published	in	2015(Papanagiotou	Panagiotis	and	Ntaios	George,	2018)	
mechanical	thrombectomy	(MT)	has	become	the	cornerstone	of	acute	ischemic	stroke	treatment	and	
can	be	considered	standard	of	care	for	large	vessel	stroke	(Turc	et	al.,	2019).	Here,	the	thrombus	is	
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removed	in	a	neuroradiological	 invasive	procedure	by	specialised	neuroradiologists.	Whereas	in	the	
beginning	only	very	selected	patients	received	this	procedure,	today	in	some	countries	⅕	of	all	patients	
receive	MT	with	an	average	of	7%	(Aguiar	de	Sousa	et	al.,	2019).	A	reason	for	this	is	the	relatively	large	
time	window	where	MT	is	possible	in	contrast	to	i.v.-thrombolysis.	Current	guidelines(Turc	et	al.,	2019)	
allow	MT	with	high	evidence	within	the	first	six	hours	of	stroke.	Moderate	evidence	exists	that	MT	is	
also	 beneficial	 in	 a	 time	window	between	 6	 and	 24	 hours	 after	 stroke	 onset.	 Here,	MT	 should	 be	
performed	according	to	the	criteria	of	 the	DEFUSE-3	or	DAWN	trials.	Overall,	 the	NNT	of	MT	 is	1:8	
which	is	one	of	the	lowest	numbers	for	stroke	treatment	so	far(Church	et	al.,	2017).	Overall,	It	can	be	
expected	that	the	ratio	of	patients	with	stroke	treated	with	MT	will	rise	with	new	study	results,	new	
organizational	models	for	stroke	treatment	and	wider	access	to	the	procedure.		

1.5. Stroke	Outcome:	Treatment	Selection	Strategies		
Given	the	previously	introduced	penumbra	model,	and	the	fact	that	salvageable	tissue	can	persist	long	
after	 stroke	 onset,	 and	 the	 insufficient	 characteristic	 of	 the	 time	 clock	 approach	 to	 not	 take	 into	
account	 the	 penumbra,	 selection	 strategies	 for	 individual	 patient	 selection	 have	 been	 a	 focus	 of	
research	since	many	years.	

We	cannot	give	a	comprehensive	review	here,	but	we	will	focus	on	the	major	facts.	A	natural	way	to	
approach	 the	 so-called	 tissue	 clock	 paradigm	 is	 neuroimaging.	 However,	 PET	 is	 not	 feasible	 and	
available	 in	 the	clinical	 setting.	Thus,	 for	both	CT	and	MRI,	perfusion	 imaging	 strategies	have	been	
developed.	In	these	cases,	the	penumbra	was	coined	tissue-at-risk	and	if	tissue-at-risk	was	detected,	
this	status	was	termed	mismatch.	Other	paradigms	like	the	mismatch	between	clinical	deficit	and	small	
stroke	lesion	were	introduced.	The	mismatch	paradigm	unfortunately	never	fulfilled	its	promise	for	i.v.	
thrombolysis.	 Heterogeneity	 of	 technical	 parameters,	 post-processing,	 and	 the	 inability	 of	 the	
scientific	community	to	surmount	these	problems	led	to	several	failed	studies	so	that	today	no	general	
recommendation	exists	to	use	the	mismatch	concept	for	patient	selection	in	i.v.	thrombolysis.	This	was	
in	 contrast	 to	 the	 theoretical	 framework	 predicting	 an	 advantage	 for	 neuroimaging	 selection	
strategies.		

However,	for	MT,	recent	studies	indicate	a	benefit	using	neuroimaging	selection	strategies.	The	DAWN	
trial	successfully	used	the	clinical-stroke	lesion	mismatch	to	perform	MT	in	a	time	frame	of	6-24	hours	
after	stroke	onset.	The	DEFUSE-3	trial	successfully	used	the	perfusion	mismatch	concept.	These	results	
are	 part	 of	 official	 guidelines	 (see	 1.4)	 and	 are	 promising	 for	 the	 development	 of	 the	 tissue-clock	
approach	in	the	future.		

DWI-FLAIR	 mismatch	 is	 another	 type	 of	 mismatch	 which	 has	 a	 different	 selection	 goal	 then	 the	
previously	 discussed.	Up	 to	 25%	of	 stroke	patients	 arrive	 to	 the	hospital	with	unknown	 time	 from	
stroke	onset,	so-called	wake-up	stroke.	Here,	under	current	guidelines	no	therapy	is	offered	since	the	
time	from	stroke-onset	is	unclear.	However,	MRI	provides	a	solution.	In	stroke	MRI,	-	amongst	others	
-	 two	 different	 sequences,	 diffusion-weighted-imaging	 (DWI)	 and	 FLUID-attenuated-inversion-
recovery(FLAIR),	are	used.	DWI	shows	the	infarct	core,	the	cytotoxic	edema	after	minutes	of	stroke.	
FLAIR,	however,	becomes	positive	only	once	the	tissue	transformed	to	vasogenic	edema	after	due	to	
the	breakdown	of	the	brain-blood-barrier.	In	many	patients,	the	latter	occurs	only	hours	after	stroke	
in	contrast	to	the	lesions	visible	in	DWI.	So,	a	mismatch	between	the	two	modalities	is	indicative	of	an	
earlier	stroke	which	should	still	be	treatable.	Moreover,	if	used	in	this	way	the	DWI-FLAIR-mismatch	is	
actually	closer	to	a	tissue-clock	approach	since	we	do	not	know	the	exact	time	from	stroke-onset.	And	
in	2018,	it	was	shown	that	it	 is	safe	to	treat	patients	with	wake-up	stroke	based	on	the	DWI-FLAIR-
mismatch	and	that	patients	benefit	from	i.v.	t-PA(Thomalla	et	al.,	2018).		

Another	selection	strategy	is	to	use	the	so-called	ASPECT	score.	It	is	10	scale	score	which	can	be	derived	
from	acute	CT	or	MR	imaging	and	can	also	be	derived	automatically	through	the	so-called	e-ASPECT	
score.	Essentially,	the	lower	the	ASPECT	score	is	the	more	tissue	is	infarcted	in	the	area	of	the	anterior	
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circulation.		It	has	been	shown	that	higher	numbers	of	the	ASPECT	score	are	associated	with	favourable	
outcomes	 and	 lower	 scores	 are	 less	 likely	 to	 be(Phan	 et	 al.,	 2018).	 Preliminary	 reports,	 however,	
indicate	that	MT	might	also	be	favourable	in	patients	with	lower	ASPECTS(Kaesmacher	Johannes	et	al.,	
2019).		

It	should	be	mentioned,	however,	that	the	intra-	and	interrater	agreement	between	raters	both	for	
DWI-FLAIR-mismatch	as	well	as	ASPECT	score	is	not	very	high	(Fahed	Robert	et	al.,	2018).	Thus,	more	
robust	and	objective	criteria	are	warranted.		

	

1.6. Predictive	Modelling	for	Stroke	Outcome	Prediction	
Generally,	 predictive	modelling	 in	 stroke	 is	 still	 rare	 in	 the	 literature.	 In	 the	published	 literature,	 a	
popular	approach	is	the	prediction	of	functional	outcome.		

In	these	cases,	the	most	often	used	label	is	the	so-called	modified	Rankin	Scale	(mRS).	mRS	is	a	seven	
point	scale	indicating	a	range	from	restitutio-ad-integrum	(0)	to	death	(6).	While	the	scale	has	known	
challenges,	it	remains	until	today	the	scale	of	choice	of	the	primary	outcome	measure.	Broderick	et	al	
summarized	the	strengths	and	weaknesses	of	the	mRS	scale(Broderick	Joseph	P.	et	al.,	2017):	The	mRS	
“covers	 the	 entire	 range	 of	 functional	 outcomes	 from	 no	 symptoms	 to	 death,	 its	 categories	 are	
intuitive	and	easily	grasped	by	both	clinicians	and	patients,	its	concurrent	validity	is	demonstrated	by	
strong	correlation	with	measures	of	stroke	pathology	(eg,	infarct	volumes)	and	agreement	with	other	
stroke	scales,	and	its	use	has	demarcated	effective	and	ineffective	acute	stroke	therapies	in	trials	with	
appropriately	powered	sample	sizes.	With	a	limited	number	of	levels,	the	mRS	may	be	less	responsive	
to	 change	 than	 some	 other	 stroke	 scales;	 however,	 a	 single-point	 change	 on	 the	mRS	 is	 clinically	
relevant.	A	limitation	of	the	mRS	has	been	the	subjective	determination	between	categories	and	the	
reproducibility	of	the	score	by	examiners	and	patients.”.	

An	improved	alternative	to	the	classic	mRS	is	a	utility-weighted	(UW)	version,	the	so-called	UW-mRS.	
Here,	 the	 focus	 is	 on	 utility,	 i.e.	 patient-centred	 quality	 of	 life	measures.	 A	 utility	 of	 1	 represents	
excellent	 health.	 Broderick	 summarizes	 several	 approaches	 where	 each	 of	 the	 mRS	 scores	 was	
assigned	a	utility	score(Broderick	Joseph	P.	et	al.,	2017):		

Average	utility	score	per	mRS	score	

mRS	 0	 1	 2	 3	 4	 5	 6	

utility	 1	 0.91	 0.76	 0.64	 0.32	 0	 0	

	

Analyses	 showed	 that	 UW-mRS	 demonstrated	 advantages	 over	 the	 ordinal	 scale	 as	 well	 as	
dichotomized	analyses.	Another	advantage	of	UW-mRS	is	the	ability	to	calculate	quality-adjusted-life-
years	(QALY)	from	the	measure.		

Thus,	the	UW-mRS	solves	the	problem	where	the	original	mRS	did	not	translate	well	to	the	question	
“what	does	that	mean	to	the	patient”.	Naturally,	the	advantages	and	disadvantages	of	the	scale	remain	
since	only	a	numerical	transformation	is	done.	Despite	the	shortcomings	of	the	mRS	score,	only	a	few	
attempts	have	been	made	to	develop	new	scoring	systems.	This	is	surely	also	based	on	the	notion	that	
the	validity	of	the	mRS	is	sufficient	and	changes	in	its	effect	size	can	be	validly	used	to	determine	the	
efficacy	of	new	stroke	treatments	(Broderick	Joseph	P.	et	al.,	2017).	Other	works	have	pointed	out	that	
all	used	scales,	 the	NIHSS,	the	Barthel	 index	and	the	mRS	are	all	correlated	to	each	other	and	thus	
capture	different	aspects	of	the	latent	variable	“stroke	recovery”(Saver	Jeffrey	L.,	2011).	
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For	predictive	modelling,	usually	a	dichotomized	mRS	outcome	is	used.	This	can	be	explained	by	the	
fact	 that	simpler	models	can	be	used	with	a	dichotomized	outcome	and	multi-label	classification	 is	
often	not	feasible	with	the	-	comparatively	-	low	numbers	of	available	patients	in	the	medical	domain.	
Also,	for	individual	predictive	modelling	the	interest	is	not	to	find	all	shifts	between	the	groups	of	the	
ordinal	scale	like	it	is	desirable	for	the	comparison	of	treatment	options.	In	contrast,	we	would	like	to	
know	if	the	patient	will	have	a	desirable	outcome	or	not.		

First	reports	performing	predictive	modelling	-	using	traditional	linear	regression	and	mRS	as	outcome	
measure-	date	back	as	far	as	2006.	These	works	and	follow	up	works	using	more	advance	algorithms	
have	established	-	at	least	for	i.v.-thrombolysis	-	that	non-treatment	features	exert	the	strongest	effect	
on	functional	stroke	outcome.	Age	and	the	baseline	NIHSS	have	shown	numerous	times	to	be	most	
predictive	 for	 functional	 outcome	 after	 stroke.	 Thus	 e.g.,	 for	 comparative	 studies	 baseline	
heterogeneity	of	the	groups	needs	to	be	adjusted	for(Saver	Jeffrey	L.,	2011).		

For	MT,	only	one	published	work	has	explored	predictive	modelling.	Van	Os	et	al.	tested	a	variety	of	
algorithm	using	the	MR	CLEAN	study	data	for	3	months	dichotomous	outcome	prediction.	They	found	
moderate	prediction	both	by	advanced	algorithms	as	well	as	classic	logistic	regression	approaches.	The	
study	did	not	include	imaging	as	input.	There	is	a	lack	of	explorations	into	predictive	modelling	using	
MT	data,	especially	integrating	clinical	data	and	imaging	data.		

	

1.7. Precision	Medicine	in	Stroke	
Precision	 medicine	 is	 a	 form	 of	 health	 care	 that	 emerged	 in	 the	 past	 years	 that	 relies	 on	 data,	
algorithms	and	precision	molecular	tools	to	offer	individualized	care	for	patients(Dzau	and	Ginsburg,	
2016).	Its	goal	is	to	give	insight	into	mechanisms	of	disease,	treatment	and	prevention.	By	treating	the	
patient	 as	 an	 individual,	 the	 attending	 physician	 is	 able	 to	 consider	 variations	 in	 pathophysiology,	
genome	and	anatomical	variances.	This	can	improve	outcomes	and	reduce	healthcare	costs.	Precision	
medicine	 relies	 on	 the	 aggregation,	 integration	 and	 analysis	 of	 data	 in	 a	 computational	 “learning	
network”(Dzau	 and	 Ginsburg,	 2016).	 It,	 therefore,	 requires	 interdisciplinary	 cooperation	 at	 the	
crossroads	of	medicine,	statistics	and	computer	science.	One	particularly	promising	approach	is	the	
use	 of	 machine	 learning	 artificial	 intelligence,	 particularly	 deep	 learning.	 Stroke	 has	 a	 complex	
pathophysiology	comprising	medical	and	environmental	factors(Hinman	et	al.,	2017)	and	is,	therefore,	
a	suitable	candidate	for	precision	medicine(Rostanski	and	Marshall,	2016).	Different	types	of	data	like	
clinical	and	imaging	data	are	available	for	ischemic	stroke.	Additionally,	given	its	high	prevalence,	a	lot	
of	 data	 is	 routinely	 acquired	 and	 can	 be	made	 available.	 A	 precision	medicine	 approach	 can	 thus	
integrate	 this	 data	 and	 offer	 higher	 performance	 for	 treatment	 decision	 making	 and	 outcome	
prediction.	
A	natural	candidate	for	the	application	of	these	techniques	is	neuroimaging.	Routinely,	several	images	
are	acquired	for	each	stroke	patient.	The	common	modalities	are	CT	and	MRI.	Here,	structural	images	
including	vessels	and	sometimes	functional	 images,	e.g.	about	perfusion,	are	acquired.	While	these	
images	are	nowadays	visually	analyzed	to	identify	the	presence	of	stroke	or	to	estimate	the	perfusion	
deficit,	their	quantitative	properties	are	not	routinely	assessed.	A	major	reason	for	this	is	the	lack	of	
methods	 with	 which	 these	 changes	 can	 be	 automatically	 and	 quickly	 translated	 into	 meaningful	
features.	This,	however,	is	the	prerequisite	to	finally	use	this	highly	informative	available	information	
-	that	is	currently	ignored	in	the	clinical	setting	-	to	improve	stroke	treatment.	Here,	fully	automated	
pipeline	 based	 on	 deep	 learning	 technology	 will	 automatically	 extract	 important	 stroke	 imaging	
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properties	and	translate	them	into	measures	for	precision	medicine.	Together	with	clinical	data	and	so	
far	untapped	sources	of	information	such	as	genetic	markers	unprecedented	accuracy	can	be	achieved.		
However,	so	far	predictive	modelling	approaches	for	stroke	have	not	yet	tapped	into	the	potential	of	
precision	 medicine.	 First,	 precision	 medicine	 approaches	 need	 to	 follow	 current	 best	 practice	
guidelines,	 otherwise	 their	 predictive	 value	 is	 highly	 limited.	 In	 stroke,	 this	 means	 that	 predictive	
modelling	 for	 precision	 medicine	 needs	 to	 be	 performed	 with	 current	 MT	 data.	 Most	 available	
databases,	however,	stem	from	the	pre-MT	era.		
Also,	modern	machine	learning	approaches	need	to	be	able	to	incorporate	data	from	multiple	sources	
in	different	formats.	For	the	best	performing	algorithms	like	deep	learning,	we	need	to	tailor	specific	
architectures	 -	 so-called	multistream	 architectures	 -	 which	 can	 integrate	 different	 inputs	 into	 one	
predictive	model.		
Further,	prediction	models	need	to	be	able	to	extract	the	necessary	features	automatically	from	the	
given	data.	Decision	support	systems	integrated	into	the	clinical	workflow	cannot	rely	on	any	manual	
input.		
Moreover,	 it	 is	 important	 to	 consider	 that	 precision	 medicine	 approaches	 will	 be	 used	 for	 every	
patient.	however,	it	is	known	that	study	data	does	not	necessarily	represent	the	population	of	real-
world	patients	due	to	constraints	like	the	need	for	formal	consent,	specific	populations	frequenting	
university	hospitals	and	others.	It	is	important	to	show	the	capacity	of	predictive	models	to	maintain	
their	predictive	performance	in	cohorts	of	real-world	data.		
Lastly,	the	label	used	must	be	informative	for	patients	and	capture	patient-centred	quality-of-life	(QoL)	
measures	which	are	relevant	for	patients.	Here,	research	into	new	QoL	measures	as	outlined	in	the	
goals	of	P4Q	is	warranted	and	should	involve	patient-reported	outcomes.	
	

1.8. Design	of	Predictive	Architectures	for	Precision	Medicine	
in	Stroke	

Taken	together,	the	design	of	predictive	architectures	for	precision	medicine	in	stroke	needs	to:	

- use	current	mechanical	thrombectomy	data	
- use	a	wide	variety	of	 features	 from	different	sources	 to	account	 for	 the	heterogeneity	and	

individuality	of	stroke	
- be	able	to	integrate	a	wide	variety	of	features	into	a	single	model	
- be	independent	of	any	manual	input	
- be	validated	using	independent	real-world	mechanical	thrombectomy	data	cohorts	
- research	into	new	QoL	markers	for	stroke	outcome	with	patient-reported	outcomes	

	

1.9. Rationale	for	Data	Collection	
With	the	current	study	we	would	like	to	target	the	points	mentioned	in	1.8.		

By	gathering	current	MT-data	from	two	different	hospitals,	we	will	be	able	to	capture	the	current	state-
of-the-art.	 We	 will	 use	 this	 data	 to	 develop	 modern	 multi-stream	 deep-learning	 architectures	
integrating	a	wide	variety	of	clinical	and	imaging	features	into	a	single	predictive	model	without	the	
need	for	manual	feature	extraction.	Moreover,	we	will	gather	commonly	used	outcome	measures	in	
stroke	as	well	as	general	QoL	outcome	measures	and	will	explore	combining	these	into	new	labels.	
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Lastly,	we	will	use	the	Open	Stroke	Data	Platform	to	incentivize	other	centres	to	provide	real	world	MT	
thrombectomy	data	to	validate	our	predictive	models.		

		

	

2. Study	 Design	
	
2.1. General	information	

	

Study	Title	 P4Q-AS	

Clinical	Phase	 Acute	Treatment	

Design	 Observational	bicentral	

Participants	 Ischemic	stroke	patients	above	18	years	of	age	who	receive	mechanical	
thrombectomy	in	routine	care	

Sample	Size	 300	

Planned		Period	 M19-M36	(January	2020	-	April	2021)	1	year	+	3M	FU	

Planned	Recruitment	
period	

M19-M33	(January	2020	-	December	2020)	

		 Objectives	 Outcome	Measures	 Timepoint(s)	

Primary	
		

The	development	of	new	
QoL	markers	for	short	
and	long	term	outcome	
after	stroke	and	
mechanical	
thrombectomy	with	
patient-reported	
outcomes	

mRS,	Barthel	index,	NIHSS,	
QoL	markers	

3	months	after	
stroke	
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Secondary	
		

The	development	of	
novel	precision	medicine	
machine	learning	and	
deep	learning	
architectures	integrating	
various	different	clinical	
and	radiological	input	
variables	for	the	
prediction	of	QoL	
markers	at	3	months	post	
stroke		

n.a.	 n.a.	

	

	

	

2.2. Objectives	and	Outcome	Measures	
	

Objectives	 Outcome	Measures	 Timepoint(s)	of	
evaluation	

Primary	Objective	

The	development	of	new	QoL	
markers	for	short	and	long	term	
outcome	after	stroke	and	
mechanical	thrombectomy	with	
patient	reported	outcomes	

mRS,	Barthel	index,	NIHSS,	QoL	markers	 3	months	after	
stroke	
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Secondary	Objective	

The	development	of	novel	
precision	medicine	machine	
learning	and	deep	learning	
architectures	integrating	various	
different	clinical	and	radiological	
input	variables	for	the	prediction	
of	QoL	markers	at	3	months	post	
stroke		

n.a.	 n.a.	

	

2.3. Study	Design	
1	year	one-armed	non-interventional	observational	study.	

2.4. Participants	 Description	
	

2.4.1. Study	Participants	
Participants	are	routinely	treated	acute	stroke	patients	at	two	centres,	the	Charité	university	hospital	
Berlin	as	well	as	the	Johanna-Etienne-hospital	in	Neuss,	Germany.	

2.4.2. Inclusion	criteria	
- age	>=	18	years	
- acute	ischemic	stroke,	radiologically	proven	
- first-time	stroke	
- treatment	with	mechanical	thrombectomy	
- signed	informed	consent	

	

2.4.3. Exclusion	criteria	
- patients	with	diagnosed	stroke	and	MT	treatment,	but	a	different	diagnosis	is	established	post	

hoc	

	

	

	

2.5. Study	Procedures	
All	study	procedures	will	be	performed	according	to	GCP	and	only	after	obtaining	ethics	approval	(see	
point	 2.5.2).	
	

2.5.1. Recruitment	
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Recruitment	will	 be	performed	by	professional	 study	personnel	 initiated	by	 the	 study	 coordinator.	
Recruitment	will	take	place	at	the	ER	services	of	both	Charité	Berlin	and	the	Johanna-Etienne-Hospital	
Neuss.	 Patients	 arriving	 with	 acute	 ischemic	 stroke	 and	 the	 routine	 clinical	 decision	 to	 perform	
mechanical	thrombectomy	will	be	screened	and	if	eligible	their	informed	consent	will	be	obtained	by	
either	 the	 patient	 or	 their	 next	 of	 kin.		
	

2.5.2. Regulatory	clearance	
	
The	study	will	need	approval	by	the	ethics	commitee	of	Charité	University	Hospital	Berlin	as	well	as	
the	ethics	committee	of	the	Heinrich-Heine-University	Düsseldorf.	The	ethics	committees	will	review	
the	 study	protocol,	 the	Study	 Informative	Sheet	 (SIS),	 the	 Informed	Consent	 (IC)	and	 the	 Informed	
Questionnaire	(IQ)	of	the	study.	The	Study	Informative	Sheet	explains	the	study	to	the	participants,	
the	expected	effects,	possible	complications	and	what	the	study	implies	to	the	patient.	In	the	Informed	
Questionnaire	 of	 the	 study,	 several	 questions	 are	 asked	 to	 the	 participant	 to	 assess	 if	 he/she	
understood	the	informed	consent	and	its	implications.	

In	 case	 of	 legal	 incapacity,	 a	 representative	 or	 tutor	 of	 the	 patient	 will	 sign	 SIS,	 IC	 and	 IQ.		
	

2.5.3. Baseline	assessments	
Baseline	 clinical	 variables	 will	 be	 assessed	 as	 outlined	 in	 WP3	 with	 harmonized	 variable	 names.		
	

2.5.4. Data	Management	
Data	will	be	collected	through	an	electronic	case	report	 form	(eCRF)	and	for	data	after	dismissal	 in	
addition	with	an	electronic	patient-reported	outcome	framework	(ePRO).	As	outlined	in	Deliverable	
D5.1	appropriate	frameworks	have	been	selected	and	are	ready	to	use.	The	features	of	the	ePRO	and	
the	eCRF	frameworks	are	described	in	D5.1.	

From	 there,	 study	 data	 will	 be	 transferred	 to	 the	 data	 repository	 (Data	 warehouse)	 for	 further	
processing	and		predictive	modelling	as	outlined	in	the	deliverables	of	WP2.	A	preliminary	database	
scheme	can	be	found	in	the	appendix.		

	

2.5.5. Withdrawal	of	Participants	
During	 the	 course	of	 the	 study,	 a	 participant	may	withdraw	early	 from	 it	 at	 any	 time	 and	 request	
deletion	of	their	data.	In	addition,	the	Investigator	may	discontinue	a	participant	from	the	study	at	any	
time	 if	 the	 Investigator	 considers	 it	 necessary.	 Provide	 justification	 for	 any	 procedures	 and	
observations	that	will	be	required	following	a	complete	withdrawal.	
	

2.5.6. Definition	of	End	of	Study	
The	end	of	the	study	is	defined	as	the	follow-up	of	the	last	patient	in	the	3M	FU	visit.		

	

2.6. Study	Intervention	
No	interventions	are	planned	in	P4Q-AS.	
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2.7. Statistical	Analysis	
	

2.7.1. Description	of	statistical	methods	
	

Collected	features	and	label	data	will	be	used	to	build	predictive	models.	Here,	baseline	algorithms	like	
logistic	regression	will	be	used	as	well	as	advanced	algorithms	like	decision	trees,	tree	boosting	and	
artificial	 neural	 nets.	 Here,	 Python	 will	 be	 used	 applying	 standard	 packages	 like	 sci-kit	 learn,	
tensorflow,	keras	and	pytorch.		

Data	will	be	described	with	mean	and	standard	deviation	in	case	of	normal	distributions	or	median	and	
IQR	for	continuous	variables.	For	other	variables,	histograms	will	be	used.	Exploratory	data	analysis	
will	be	performed	with	Python	and	R.			

	

2.7.2. Sample	Size	calculation	
For	predictive	modelling,	the	sample	size	needs	to	be	estimated	based	on	prior	experience.	Sample	
size	calculations	like	for	frequentist	comparisons	are	not	readily	available.	For	a	study	of	the	planned	
size,	 the	planned	architectures	and	the	primary	objective	of	prediction	of	dichotomized	outcome	a	
sample	size	of	300	can	be	deemed	sufficient.		

	

2.8. Ethical	and	regulatory	considerations	
The	Investigator	will	ensure	that	this	study	is	conducted	in	accordance	with	the	Ethical	regulations,	
following	clearance	described	in	section	2.5.2.	
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4. Appendix	-	Data	Base	Scheme	
	

Introduction	
		
Our	database	schema	consists	of	

1.					Usual	tables	with	one	or	more	attributes.	Prefix:	T	
2.					Catalogue	tables	which	represent	categorical	values	of	specific	properties.	Prefix:	T_CAT	
3.					Mapping	tables	which	connect	a	record	in	a	usual	table	to	a	categorical	value	in	a	catalogue	
table.	Prefix:	T_MAP	

		
Attributes	can	have	prefixes	as	well:	

·			 PK:	primary	key,	unique	identifier	(in	record's	own	table)	of	a	record	
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·			 FK:	foreign	key,	reference	to	a	key	(often	the	PK)	in	a	different	table	
		

The	PK_code	attribute	often	found	in	catalogue	tables	can	for	example	be	a	common	abbreviation	
such	as	TIA.	

		
Special	tables:	
		
CAT_truth_values:	
This	table	is	used	to	represent	values	which	are	typical	in	a	study	questionnaire.	
Value	examples	are	Not	measured,	not	asked,	not	sure,	not	known,	yes,	no.	

·						PK_code:	varchar	
·						property:	varchar	
·						value	(or	description):	varchar	

		
Attributes	which	are	a	varchar	foreign	key	(FK_truth_value_code	would	be	a	more	correct	but	less	

understandable	name	probably)	to	this	table	are	called	presence:	TruthValue	in	the	diagram	
and	in	the	following	document.	

		
units:	Table	to	represent	different	types	of	units.	Not	used	at	the	moment.	
		

Tables:	
		
patients:	

·						PK_id:	integer	
		

demographics:	
·						PK_id:	integer	
·						firstname:	varchar	
·						lastname:	varchar	
·						yearOfBirth:	integer	
·						monthOfBirth:	integer	
·						dayOfBirth:	integer	
·						countryOfBirth:	integer	
·						age:	integer	
·						ethnicity:	varchar	
·						dateOfDeath:	Date	
·						sex:	Boolean	
·						weight:	float	
·						height:	integer	
·						FK_patient_id:	integer	-	reference	to	T_patients	

		
We	have	not	decided	yet	which	information	about	a	patient's	age	we	would	store	and	therefore	

included	both	attributes	(birthdate	and	age)	in	the	schema.	A	similar	decision	has	to	be	
made	regarding	countryOfBirth	and	ethnicity	

		
Value	semantics:	
sex:	
		
studies:	
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This	table	is	used	in	order	to	assign	multiple	patients	to	one	or	more	studies.	
·			 PK_id:	integer	
·			 name:	varchar	

		
participations:	

·			 PK_id:	integer	
·			 id_in_study:	integer	-	The	internal	id	of	the	referenced	patient	in	the	referenced	study	
·			 FK_patient_id:	integer	
·			 FK_study_id:	integer	

																																																																																																							
projects:	
This	table	allows	patients	to	be	assigned	to	one	or	more	projects.	

·						PK_name:	integer	
		

The	relation	between	projects	and	patients	is	stored	using	the	MAP_patients_projects	table.	
		
events:	
This	table	is	used	for	events/incidents/occurences	such	as	Admissions	or	Reinfarctions	(see	

EventTypes	below)	
·						PK_id:	integer	
·						datetime:	
·						time_label:	If	no	timestamp	is	provided	a	time_label	such	as	'day	1'	or	'admission'	can	be	given	
·						FK_event_type_code:	varchar	-	Reference	to	an	event	type	(see	below)	
·						FK_patient_id:	integer	-	Reference	to	the	patient	

		
CAT_event_types:	
Event	types	such	as:	

·						Admisson	
·						StrokeOnset	
·						Complication	
·						Edema	
·						Reinfarction	
·						Pneumonia	
·						Symptomatic	Bleeding	
·						Discharge	

		
Attributes	of	this	table	are:	

·						PK_code:	integer	
·						description:	varchar	

		
images:	Table	for	metadata	of	radiological	images	

·						PK_id:	integer	
·						time:	timestamp	
·						file_location:	varchar	
·						FK_patient_id:	integer	references	patient	
·								

An	image	can	be	linked	to	one	or	more	image_properties	by	the	
MAP_images_image_properties	mapping	table.	

		
CAT_image_properties:	
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I.e.:	Modality,	Space,	Type	(Sequence),	Quality,	Processing	Steps	
·						PK_code:	varchar	
·						property:	varchar	
·						value	(or	description):	varchar	

		
An	example	entry	in	this	table	would	be	('T1',	'type',	'T1	weighted')	
findings:	
This	table	in	combination	with	CAT_finding_types	and	CAT_territories	is	used	to	store	information	

about	radiological	findings.	
		
The	findings	table	stores	references	to	a	finding_type,	a	territory	and	the	patient.	It	also	stores	a	

TruthValue	as	the	presence	attribute	indicating	wether	or	not	a	finding	is	present	(or	not	
measured	for	example).	

		
Quantifiable	findings	can	be	stored	using	the	radiological_scores	table	(see	below).	
		
CAT_finding_types:	
Examples:	Occlusion,	Lesion,	Ischemia,	Vessel	malformation,	Bleeding,	Microangiopathy	

·			 PK_code:	varchar	
·			 name:	varchar	-	a	name	describing	the	finding	

		
radiological_scores:	
Used	for	saving	properties	such	as	a	lesion	volume.	

·						measurement:	varchar	-	property	which	was	measured	
·						value:	float	
·						FK_finding_id:	reference	to	a	record	in	the	findings	table	

		
CAT_territories:	
Provides	categorical	options	for	storing	the	territory	of	a	finding,	a	vascular_intervention	or	a	

cerebrovascular_event	
		

·						PK_code:	integer	
·						category:	varchar	-	I.e.	vessel,	side,	lobe,	segment	
·						name:	varchar	-	value	of	categorical	propertie,	i.e.	MCA,	ACA,	right,	left,	frontal,	occipital	

		
It	is	important	to	understand	that	the	exact	region	of	a	finding	(or	something	else)	is	stored	by	

mapping	multiple	CAT_territories	records	to	one	finding	record	using	the	
MAP_findings_territories	table.	

		
For	example	given	the	following	CAT_territories	table	
		
(MCA,	vessel,	MCA),	
(r,	side	(transversal),	right)	
		
storing	'MCA	right'	for	a	finding	with	id	7	would	require	storing	two	entries	in	the	

MAP_findings_territories	table:	(7,	MCA),	(7,	r)	
		
One	could	of	course	also	create	entries	in	T_CAT_territories	for	every	possible	combination	of	

options.	
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cerebrovascular_events:	
Stores	information	about	the	acute	and	previous	events	

·						PK_id:	integer	
·						datetime:	timestamp	
·						acute:	boolean	-	whether	this	record	described	the	acute	event	resulting	in	hospitalization	
·						localisation_unclear:	boolean	-	whether	the	location	can	be	determined	/	is	stored	
·						symptom_length:	varchar	-	string	describing	the	symptom	length	(3m,	1h,	2d)	
·						FK_cerebrovascular_event_type_code:	reference	to	CAT_cerebrovascular_event_types	

		
The	affected	territory	is	encoded	by	entries	in	the	MAP_cerebrovascular_events_territories	

mapping	table.	
		
CAT_cerebrovascular_event_types:	
Encodes	events	such	as	Infarct,	TIA,	ICB,	SAB,	SVT	

·						PK_code:	varchar	
·						name:	varchar	-	name,	description	or	abbreviation	

		
neurological_deficits:	
Textual	descriptions	of	neurological	deficits	

·						description:	text	
·						duration:	intervall	
·						FK_patient_id:	reference	to	affected	patient	

		
clinical_parameter_score:	
Scores	for	numerical	clinical	parameters	such	as	NIHSS,	mRS,	Oxygen	saturation,	TOAST,	heart	rate	
The	parameter	type	is	encoded	by	the	CAT_clinical_parameter_types	table	(see	below).	

·						PK_id:	integer	
·						datetime:	timestamp	
·						time_label:	varchar	-	i.e.	day1,	admission,	etc.	
·						value:	float	
·			 FK_clinical_parameter_type_code:	varchar	-	reference	to	parameter	type	
·			 FK_patient_id:	integer	-	reference	to	patient	

		
CAT_clinical_parameter_types:	
i.e.	NIHSS,	mRS,	Oxygen	saturation,	TOAST,	heart	rate	

·						PK_code:	varchar	
·						name:	varchar	-	name,	description	or	abbreviation	

		
medication:	

·			 PK_id:	integer	
·			 started:	timestamp	
·			 stopped:	timestamp	
·			 dosis:	float	
·			 drug_name:	varchar	
·			 regarding_latest_stroke:	boolean	-	wether	the	treatment	is	used	for	the	latest	stroke	
·			 FK_patient_id:	integer	-	reference	to	patient	

		
MAP_diagnoses:	

·						PK_id:	integer	
·						presence:	TruthValue	
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·						FK_patient_id:	integer	
·			 FK_disease_code:	varchar	

		
CAT_diseases:	
list	of	diseases.	used	for	referencing	in	T_diagnoses	

·						PK_code:	varchar	
·						name:	varchar	-	name,	description	or	abbreviation	

		
MAP_patients_risk_factors:	

·						PK_id:	integer	
·						presence:	TruthValue	
·						FK_patient_id:	integer	
·			 FK_risk_factor	_code:	varchar	

		
CAT_risk_factors:	
list	of	risk	factors.	used	for	referencing	in	T_MAP_patients_risk_factors.	

·						PK_code:	varchar	
·						name:	varchar	-	name,	description	or	abbreviation	

		
vascular_interventions:	

·						PK_id:	integers	
·			 presence:	TruthValue	
·			 datetime:	timestamp	
·			 FK_patient_id:	integer	-	references	patient	
·			 FK_territory_code:	varchar	-	references	territory	(see	above)	
·			 FK_treatment_type_code:	varchar	-	references	territory	(see	above)	

		
CAT_treatment_types:	
list	of	treatment	types.	i.e.	lysis	(ia,	iv),	stents,	arterectomy	

·						PK_code:	varchar	
·						name:	varchar	-	name,	description	or	abbreviation	

	
	
	


