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Abstract 
(for dissemination) 

This deliverable describes the approaches to be used in PRECISE4Q regarding 
the hybrid modelling. In other words, herein, we specify how the mechanistic, 
bioinformatics, and machine learning models will be combined. First the 
three fields are described, including state-of-the-art methodology and some 
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key models. Second, we go through how the combination will be done 
regarding calculation of risk factors. This is done in a two step fashion. In the 
first step, a blended hybrid modelling approach is done, using methodologies 
from nonlinear mixed-effects modelling, which allows for distributions of 
parameters and the addition of covariates into mechanistic models. In the 
second step, the output of those models, and the output of bioinformatics 
network models, are inputted into machine learning models, in a sequential 
hybrid modelling approach. The third part of the deliverable describes our 
approach to hybrid modelling during the simulation of scenarios. This is an 8 
step approach, that switches several times between mechanistic modelling 
and machine learning. The key idea is to use the mechanistic modelling for 
the simulations forward in time, and to use the machine learning modelling 
to extend from a few measured or simulated values, to all other values. The 
described approaches will be applicable to all phases of stroke that will be 
modelled using hybrid modelling, which primarily means the prevention and 
acute phases.  

Keywords mechanistic modelling, multilevel modelling, hybrid modelling, 
bioinformatics, machine learning, stroke, prevention, acute treatment  
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Executive Summary 

 

PRECISE4Q deals with the development of new systems medicine approaches to help aid stroke 
patients, in all phases of disease: during prevention, acute treatment, recovery and reintegration. 
Work Package 4 (WP4) deals with the development of the computational models, which are based on 
the information and data from the previous WPs, which then is used in clinical studies in WP5.  

One of the key ideas behind the modelling in WP4 is to use hybrid modelling. Hybrid models are 
models that combine two or more modelling approaches into a joint model. In this project, we will 
combine three types of models: machine-learning, bioinformatics, and mechanistic models. Each of 
these model types has their own respective strengths. Machine-learning is good because of its 
flexibility, because it can learn from data without the need for a mechanistic understanding, and 
because it can provide statistical assessments, such as risk scores. Machine-learning models often 
require large training data, where the same input and output have been measured in a large number 
of patients. Bioinformatics models are also developed to deal with large-scale data, but they are 
often large in another sense: the number of variables is large. Such data are often called omics data, 
which is a joint name for e.g. metabolomics (the measurement of all metabolites), proteomics (data 
for all proteins), genomics (all genes), etc. Omics data can be available for few, even one, patient, 
and bioinformatics methodologies use techniques such as network models to infer joint properties of 
the variables, such as clusters of co-regulated genes. These joint properties may serve as new 
biomarkers, which are not present in the original data. Such new biomarkers can also be obtained by 
the last modelling type considered herein: mechanistic models. With mechanistic models, one also 
uses networks, but then these networks are dynamic, usually described by ordinary differential 
equations, which are built to represent the available mechanistic knowledge for the system. The 
addition of this mechanistic knowledge adds new useful information to the data analysis problem, 
which means that mechanistic models can work also with small-scale data.  

In a hybrid model that combines all of these three modelling approaches - machine learning, 
bioinformatics and mechanistic models - the strengths of the three approaches are combined. The 
mechanistic and physiological knowledge is made use of - and added onto - by the mechanistic 
modelling, omics data can be utilized by the bioinformatics modelling to construct new biomarkers, 
and statistical assessments such as risk scores and diagnoses can be calculated using the machine 
learning. Furthermore, using hybrid models one can also do simulations of scenarios, which can 
investigate e.g. how a patient would be expected to respond to a new treatment, such as a drug, a 
diet, or to exercise. Using hybrid models one can also both get risk scores and scenarios, and always 
ask the question why these risk scores and scenarios are obtained. This question is answered, by 
looking inside the model, to see which mechanisms and specific patient properties that caused the 
specific prediction.  

However, even though these types of hybrid models have obvious advantages, quite few hybrid 
models have yet been developed in the systems medicine community. Some reviews and roadmaps 
are available, but few concrete examples exists, and none for the specific topic of stroke treatment, 
which is the goal of PRECISE4Q. For this reason, this deliverable, D4.4, outlines our strategy for how 
the hybrid modelling will be performed. There are two types of strategies outlined, one for 
calculations of risk scores, and one for scenario simulations.  

For calculations of risk scores, we will use a two step approach (Fig 8). In the first step, a blended 
hybrid modelling approach, employing a methodology called nonlinear mixed-effects modelling will 
be used. This, together with bioinformatics analysis of the omics data, will be used to produce new 
biomarkers, which only are obtainable using a combination of the information in the data, and the 
information in the process understanding, implemented via the models. In the second step, these 
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new model-derived biomarkers are combined with the rest of the biomarkers, coming from the data 
directly, to produce an ultimate risk score calculation, or a diagnosis. This combined two-step 
approach is referred to as sequential hybrid modelling, and the second step, combining all available 
biomarkers is made using an appropriate machine learning methodology, such as a Bayesian 
Graphical Network, or deep learning.  

For simulation of scenarios, we have outlined a new 8-step approach (Fig 9). In the first three steps, 
the data available for the patient is expanded to more data, using machine learning approaches or 
imputation, and available prior knowledge. This allows for the mechanistic model to be instantiated, 
and simulated, which are steps four and five. Thereafter, for each timepoint in the simulations, a 
similar machine learning or imputation approach as was done in step two can be used again, to infer 
reasonable updated values, at each time point, also for the omics data and for the other biomarkers. 
These inferred and updated values then go into the risk score hybrid model (Fig 8), which is used to 
also calculate a risk score for each time point.  

In summary, this delivery outlines our strategies for how the hybrid modelling in PRECISE4Q will be 
done. This will allow us to move forward with the analysis of the data from WP2 and WP3, to create 
the computational models. Because of our novel hybrid modelling approaches, we will be able to 
both calculate statistical assessments such as diagnosis and risk scores, to make use of all data and all 
prior knowledge, and to simulate new scenarios. These possibilities will be useful in the different use 
case scenarios outlined in WP1 and D4.1-2, and will be implemented and tested in new clinical 
studies, performed in WP5. The presented approaches are general, and will be applicable to all cases 
where hybrid modelling is needed, which primarily will be for prevention (such as in Use Case 3) and 
acute treatment (Use Case 2-4).  
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1 Scope and Purpose 
The goal of PRECISE4Q is to minimise the burden of stroke for the individual and for society. This will 
be done by creating data-driven predictive machine learning models, which enables – for the first 
time – personalised stroke treatment, addressing patient needs in all four stages: prevention, acute 
treatment, rehabilitation, and reintegration. 

In some of the previous deliverables in other work packages (WP1, D.1.1- D1.3), we have already 
outlined some specific use cases and scenarios that will be the main focus of PRECISE4Q. Here in 
WP4, we take these general wishes, from the clinical perspective, convert them to more concrete 
and realistic goals from a modelling perspective, and deliver the actual mathematical models, which 
are then used in the later WPs. More specifically, in D4.1, we have refined our initial assessment and 
use cases from D1.1, to an updated list of use cases, and of risk, health and resilience factors. These 
factors, the models will take as inputs. Thereafter, in D4.2, we defined the targets that the models 
should be able to deliver as outputs. These will be the outputs of the models.  

To be able to do such combinations of both i) statistical mappings from inputs (risk, health and 
resilience factors) to outputs (outcomes), and ii) to simulate scenarios of how these variables change 
over time, one needs to develop hybrid models. Such hybrid models combine mechanistic multilevel 
models, describing the underlying physiological and biochemical processes, with statistical machine-
learning models. Such models are relatively novel in the scientific community. There are several 
approaches proposed in the literature, but few implemented for specific medical applications, and 
seemingly none of them for stroke. Therefore, to prepare for the actual work to follow, in this 
deliverable (D4.4), we will outline how this hybrid modelling will be done. In other words, in this 
deliverable we will describe how we will combine the mechanistic and machine learning models, to 
be able to accomplish the combination of both outcome prediction and the simulation of specific 
scenarios.  

To help the reader to see these dependencies between the relevant deliverables submitted at this 
point, here is a summary. 

 

D1.1. Risk factors and outcome  

This deliverable summarized the scientific status regarding risk factors and targets for each 
phase of stroke.  

D1.2. Clinical challenges and needs 

Here, we outlined the clinical needs for each stroke emphasizing the most common 
questions. 

D1.3 Use Cases with inputs/outputs 

This deliverable summarized the baseline use cases which have been explored in the 
literature so far. 

D4.1 White paper on stroke risk, health and resilience factors 

This deliverable will provide a) updated use cases as a basis for deliverables 4.1, 4.2 and 4.4. 
and b) provide an overview which risk, health and resilience factors we will explore in the 
modelling phase. A major point here is the point-of-view regarding potential interventions, 
i.e. the implementation of better clinical care through machine learning based clinical 
decision support 

D4.2 Defining prediction targets for the models 
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Whereas 4.1 focuses on the features/factors which are relevant for the use cases in 4.2. we 
will summarize which targets we will predict in our modelling phase. Next to existing markers 
- as baseline - we will explore the development of new, complex Quality of life markers 
within P4Q. 
 

D4.4. Patient Outcome Heterogeneous Model Fusion Strategies 

A highly promising approach for the successful development of personalized clinical decision 
support tools is the use of combined mechanistic simulation and phenomenological machine 
learning tools. Here, - based on the use cases - we will explore the possible application of 
hybrid models for our modelling approaches.  

 

The rest of the deliverable is structure as a review paper, and it will - after appropriate modifications 
and further developments - also be submitted for journal publication.  

 

 

Figure 1: The challenge of big data: (A) Today the physicians can manage by conventional inspection 
and reasoning around data, based on experience and clinical guidelines; tomorrow this will be no 
longer be a feasible solution. (B) Overview of the 3 main types. 
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2 Background 

The challenge of Big Data warrants the development of new Precision Medicine technologies 

In the healthcare sector we have, as in many other parts of society, entered into the age of Big Data. 

Up until now, it has been sufficient for a physician who is about to diagnose a patient to look at a 

handful of biomarkers, do an interview with the patient, and then go to his/her experience and to 

clinical guidelines, to know what to do next (Fig 1A). This strategy is now no longer sufficient. With 

the advent of modern measurement and storage technologies, the amount of real world data 

available from a patient visit can easily be so large that they cannot even be inspected manually. 

Apart from that, we now have access to large clinical studies, with millions of similar patients 

examined and followed over time, which all serve as important background information. Finally, to 

add insult to injury, the patient may him/herself also have access to own smart sensor technology, 

which themselves generate huge amounts of data, of often unknown quality. To simply ignore all of 

that new data and knowledge, now available to a physician, is not an acceptable solution, and it will 

not be permitted long by society. Therefore, new technologies, which can make use of and integrate 

all of this data and knowledge are urgently needed.  

The use of this vast amount of data for highly individualized predictions is called Precision Medicine. 

It is a form of health care that emerged in the past years that relies on data, algorithms, and 

precision molecular tools to offer individualized care for patients (Dzau and Ginsburg, 2016). It gives 

insight into mechanisms of disease, treatment and prevention. By treating the patient as an 

individual, the attending physician is able to consider variations in pathophysiology, genome, and 

anatomical variances. This has the potential to improve outcomes and to reduce healthcare costs. 

Precision medicine has for example already been successfully used in oncology, to find genetic 

mutations, and it is now considered for a variety of different fields (Hinman et al., 2017; Rostanski 

and Marshall, 2016). Its use in stroke is now emerging as more and more pathophysiological data 

becomes available. Stroke has a complex pathophysiology, comprising medical and environmental 

factors and is therefore a suitable candidate for precision medicine (Rostanski and Marshall, 2016). 

Different types of data like clinical and imaging data are available for ischemic stroke. Additionally, 

given its high prevalence, a lot of data is routinely acquired and can be made available. A precision 

medicine approach can therefore integrate this data and offer better treatment decision making and 

outcome prediction (Dzau and Ginsburg, 2016; Hinman et al., 2017). 

Three types of data, and three corresponding types of modelling approaches 

The available data come in different forms, and can be subdivided, e.g., according to the method by 

which they can be analysed (Fig 1B). One such example is such data that can be analysed using 

mechanistic modelling. Such data can e.g. be blood concentrations of glucose and insulin, which can 

be described by metabolic models based on ordinary differential equations (ODEs) describing their 

interplay on the whole-body level (Man et al., 2007; Nyman et al., 2011); it can be blood pressures 

and flows, which can be described by either zero-dimensional ODEs, or partial differential equations 

(PDEs) (Casas et al., 2018, 2017); and it can be intracellular concentrations of metabolites and 

proteins, which may be described by ODE models that are based on metabolic and signalling 

pathways (Brännmark et al., 2017, 2013; Nyman et al., 2014). Such data and modelling would 
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normally appear in fields such as systems biology, biomechanics, systems pharmacology, etc. Note 

that all of the examples above are of models that are relevant for stroke, and that all of these models 

in PRECISE4Q will be combined into a large inter-connected multi-level and multi-timescale model. 

Another type, which needs another set of analysis tools are those belonging to the fields of omics 

and bioinformatics. Omics is a word that jointly describes data that describes all of the available units 

in one go; some examples include, e.g. proteomics, which describe all proteins; metabolomics, which 

describes all metabolites; and genomics, which describes all genes or the expression of all genes. 

These types of data are usually analysed using more simple tools than ODEs, and are instead based 

on network analyzes, that try to identify clusters of genes that together may express a significant 

change, even when each gene individually is not significantly changed by themselves (Gustafsson et 

al., 2014; Kim and Tagkopoulos, 2018; Rappoport and Shamir, 2018). A final set of data and analysis 

approaches are known as machine learning or phenomenological models. Machine learning 

approaches are based on data with a given set of inputs (e.g. biomarkers, risk and resilience factors), 

and a given set of outputs (e.g. outcomes, such as if the patient will get a stroke within the next 4 

years) (Kelleher et al., 2015).  

In summary, it is therefore clear that there are different types of data, and different types of analysis 

tools. Let us consider these modelling technologies again, and this time identify the strengths and 

weaknesses of each approach.  

     

 
Figure 2: Overview of the benefits of combining M4 models with machine learning: you can both get 
physiological insights, diagnosis and risk factors based on all data, do simulation of scenarios, and 
test treatments in silico. The overall goal of PRECISE4Q is to develop the models, combine them into 
hybrid models, and to do relevant clinical trials that allow for testing of the models. The focus of this 
review (D4.4) is on how to do the hybrid modelling.  
 

Phenomenological models, machine learning and bioinformatics  

A key benefit of machine learning and bioinformatics approaches is that they do not require 

understanding of the processes involved, i.e. they do not need any type of prior knowledge. In other 

words, these methods are, by themselves, purely data-driven, and can generate e.g. a network or 

statistical mapping from inputs to outputs from the data directly. Such models are often referred to 

as black-box models (Fig 2, lower left). The drawbacks of these approaches are that they often 

require large number of datapoints (N>10 000 ideally) to be able to extract this information. This is 
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especially true for many machine learning approaches. Nevertheless, the ever increasing amount of 

features also leads to what is known as the “curse of dimensionality” which strongly limits our ability 

to extract relevant personalized information from Big Data, even using machine learning 

methodologies (Barbour, 2019). Another drawback with machine learning models is that they are 

hard to generalize, and that they do not make use of or add to the available physiological knowledge 

about the system. In other words, with the basic versions of these methods, it is hard to ask the 

question “why” a certain prediction is obtained. There are ongoing developments to help resolve this 

(Handelman et al., 2018; Medicine, 2018; VoosenJul. 6 et al., 2017). The perhaps most important 

such approach is the hybrid modelling approach, proposed herein. Finally, bioinformatics suffers 

from many of the same problems, but there are some key differences: in bioinformatics, the result 

can often be a module or a network, which has a biological interpretation, and some background 

knowledge typically is added as a prior to the inferral of these network models. Similarly, in 

bioinformatics the largest aspect of the data is that many variables are measured; the number of 

repeats is not necessarily as big as in a typical machine learning setting (Fig 1B).  

Mechanistic multi-level, multi-timescale and multi-species modelling (M4-models) 

The benefits and drawbacks of mechanistic models are almost exactly the inverse of that of machine 

learning models. Some of the most important benefits are that it is possible to input physiological 

knowledge; that one can work with small datasets, as long as clear changes can be seen in the data; 

and that one can always ask the question “why” a particular prediction is made. Another important 

benefit is that mechanistic models can be reused, and easily expanded in new contexts, as new data 

and applications become available. Some of the most important drawbacks of systems biology 

mechanistic modelling are that they themselves are usually not statistical in nature, i.e. they usually 

do not produce such things as risk scores, which is an inherently statistical and phenomenological 

property. Furthermore, most systems biology mechanistic models are usually mean value models, 

and advanced patient-specific modelling requires the expansion of purely mechanistic modelling to 

also include phenomenological covariates, as is done in nonlinear mixed-effects modelling (Jonsson 

et al., 2000; Karlsson et al., 2015). That is one of the hybrid modelling approaches discussed further 

below.   

The need for hybrid modelling 

This comparison between phenomenological machine-learning or bioinformatics models, on the one 

hand, and mechanistic multilevel modelling, on the other hand, quickly reveals that they have 

complementary strengths and weaknesses. The strongest possible models would therefore, in 

principle, be hybrid models that combines the two modelling approaches (Fig 2, Step 2). Some such 

hybrid models have been proposed for biomedical applications. One of those proposals came from 

the Discipulus network, which produced a roadmap for how “Digital Patients” - in silico 

representations of individuals - can be developed (“Digital Patient Roadmap,” n.d.). This roadmap 

outlines many useful ideas ranging from data integration and handling, to modelling approaches, and 

even to clinical applications. However, no concrete models were developed in that network, even 

though some existing non-hybrid models for stroke are mentioned in the roadmap. There are also 

some specific hybrid models developed for biological applications, summarized in e.g. these reviews 

(Doyle et al., 2013; Stéphanou and Volpert, 2016). From these reviews a couple of things become 
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clear i) hybrid models are still rare, but their incidence has been rapidly evolving over the last couple 

of years (Stéphanou and Volpert, 2016); ii) there is no consensus regarding nomenclature, but some 

basic options (Fig 3) for how the models can be combined are emerging; iii) there are no fully 

developed hybrid models that combines mechanistic multilevel models with machine learning and 

bioinformatics in a clinically useful way, and especially none for stroke.  

Purpose and outline of review 

For all of these reasons, it is therefore clear that there is a strong need to help mature the field of 

hybrid modelling. We herein contribute to this, by presenting a more concrete pathway forward with 

clear illustrations and comments regarding how hybrid models for stroke could be developed. The 

methodologies and strategies are completely general, but we primarily illustrate their usage for 

prevention of stroke, and for acute treatment. First follows a slightly more in-depth review of each of 

the ingoing modelling approaches, and a deeper look at some of the state-of-the-art models (Fig 4-7). 

Thereafter, a two-step approach for the calculation of risk scores (Fig 8), and an eight-step approach 

for simulation of scenarios (Fig 9) is introduced.   

 

 

Figure 3: Overview of the three main approaches to hybrid modelling most often adopted today. Note 
that the denomination of these approaches has not yet converged, and that other coexisting names 
for these and related approaches have been proposed (Stéphanou and Volpert, 2016). For instance, 
sequential modelling is sometimes referred to as iterative modelling or staged hybrid models, 
depending on if the feedback from M2 to M1 is included. 
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3 Review of existing methodologies and concepts  

 3.1 Phenomenological models, machine learning, and 
bioinformatics  

Phenomenological models and machine learning 

Machine learning is a scientific discipline based on the idea that systems can learn from data (Lip et 
al., 2010). Machine learning approaches recognize patterns in data for the analytical prediction 
model building (Kelleher et al., 2015).  Two main machine learning approaches are classified into two 
main classes: supervised and unsupervised learning. In the case of supervised learning, the desired 
outputs are given beforehand. Inputs are mapped to pre-defined outputs, and model training is done 
on those known outputs. Unsupervised learning involves searching for structure in the data 
(Alpaydin, 2009). Two state-of-the art machine learning approaches for predictive model generation 
in biomedicine are artificial neural networks (AAN) and support vector machines (SVM) (Warwick, 
2004).  

An ANN is constructed like, and functions similar to, a model of neuronal activity in living organisms 
(Wasserman, 1993). In other words, the model systems work as interconnected networks of units or 
nodes (“neurons”), the systems take input information to learn from it and based on complex 
relationship or connections give an output, and the networks adapt by making changes in their 
connections based on external or internal information. This property of neural networks helps to 
build dynamic system models describing the relation between inputs and outputs (Warwick, 2013). 

The support vector machine (SVM) is a popular machine learning classifier in medicine, which was 
performance-wise the best general purpose algorithm prior to the advent of ANNs and also works 
quite well with limited amount of data. For model training, a set of data with known classification is 
given to the algorithms. This leads to building a model capable of assigning new data into one of the 
classes (Alpaydin, 2009).  

Machine learning techniques are being applied to large clinical data tasks (Rumshisky et al., 2016) to 
create diagnostic models (Hannun et al., 2019) or prediction models (Bayati et al., 2014). The 
advantage of using machine learning for Stroke outcome predictive model building is the adjustability 
of models to new data as it becomes available. This property helps to make improvement in the 
model prediction accuracy.  

In recent years, some of the machine learning techniques have been successfully applied in acute 
stroke management. A study proposed a method for developing a stroke severity index (SSI) by using 
administrative data. Stroke severity was measured using the National Institutes of Health Stroke 
Scale (NIHSS). k-nearest neighbours and conventional multiple linear regression (MLR) were used to 
develop prediction models, the models' performances were comparable according to the Pearson 
correlation coefficient between the SSI and the NIHSS (Sung et al., 2015). Van Os and colleagues 
compared multiple machine learning algorithms for the prediction of mRS outcome after 
endovascular treatment for stroke, with no particular advantage of more modern approaches in 
comparison with logistic regression, but high prediction performance (van Os et al., 2018). Several 
works have used machine learning techniques to predict the final infarct voxel-by-voxel, e.g. (Livne et 
al., 2018). 

A biomarker is a measurable indicator of some biological state or condition. Biomarkers may be used 
alone or in combination to assess the health or disease state of an individual. Blood-based 
biomarkers are tools to help in the diagnosis of stroke aetiology. Finding stroke biomarker can 
contribute to improvement in diagnostics (Muñoz et al., 2018).  
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A study by Sale et al used common inflammatory biomarkers as stroke prognostic factors and 
designed a model which predicts functional cognitive improvement after rehabilitation treatment 
from the early stage of stroke. Model inputs included functional data, clinical data, biochemical 
parameters, and data regarding the health status of rehabilitative treatment, to predict the output of 
the rehabilitation process. The outcome of stroke was successfully assessed using Multilayer 
perceptron (MLP), ANN, and SVM (Sale et al., 2018). 

Bioinformatics  

Bioinformatics starts where the amount of biological data become too large to be processed by a 
human and researchers develop new ways to analyse it with computers (Yang et al., 2017). It 
includes the computational analysis of high-throughput biological datasets called omic data sets. 
There are various types of omics datasets such as genomics (the analysis of complete genomes, i.e. 
complete sets of genes in a certain species), proteomics (the analysis of proteomes, i.e. complete 
sets of proteins in a cell), transcriptomics (the analysis of gene expression of complete genomes, i.e. 
the analysis of complete sets of transcripts) (Tseng et al., 2015). Metabolomics is a term used to 
describe measurements of multiple small molecule metabolites in biological specimens. It provides a 
snapshot of the physiology (Sidorov et al., 2019). 

 

 
Figure 4: The process of high throughput biological data for biomarker discovery by creating 

interaction networks between biologically involved molecules in a disease aetiology 

 

Using “omics” biomarker discovery approaches (genomics, proteomics, lipidomics or metabolomics), 
from multicenter prospective study‐derived biobanks, offer opportunities for discovery and 
validation of both novel risk factors and prognostic markers. This opens up a great potential to 
achieve improved prognostic stratification in stroke (Goldenberg et al., 2014). Studies on 
metabolome-related stroke discovered several important metabolite-stroke associations (Sidorov et 
al., 2019).   
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To illustrate the use of bioinformatics, one can e.g. consider a study by Muñoz et al. They performed 
a proteomic-related study using a clinical proteomics approach, to identify candidate biomarkers for 
stroke diagnosis and stroke rehabilitation. This demonstrated a fundamental role of fibrinogen 
plasmatic levels on patient admission to the stroke rehabilitative care. It was found to correlate with 
a gain in activities of daily living (ADL) at discharge from rehabilitative care (Muñoz et al., 2018). 

With the advances of biological networks (computational representation of biological interactions), it 
is possible to discover reliable and accurate molecular biomarkers and sub-network biomarkers. In 
the Muñoz study, they performed proteomic profiling in fresh thrombus samples of the ischemic 
stroke patients after intra-arterial thrombectomy treatment. Protein-protein interaction networks 
were generated from proteome expression profiles. These networks approach helped identifying the 
functional ontology of the highly connected nodes, thrombotic proteins expression correlation to 
functional modules, and helped with the identification of causal regulators of thrombotic protein 
modules playing a potential role in thrombus formation (Muñoz et al., 2018).  

 

 

Figure 5: Overview of the basic principle by which biomarkers can be calculated from data using 
mechanistic models. The basic principle is essentially the same for all models, but this particular 
example is taken from modelling of vessels around the aorta, which are calculated using a standard 
Windkessel model and 4D flow MRI data (Casas et al., 2018, 2017). 

 

 3.2 Multi-level mechanistic models for biomarker calculation and 
simulation of scenarios 

Biomarker calculation using mechanistic models 

The basic principle by which biomarkers can be obtained from mechanistic models is depicted in Fig 
5. The example is taken from (Casas et al., 2017), but the principle is quite general. The data in this 
example is taken from a technique called 4D flow MRI, which is based on Magnetic Resonance 
Imaging (MRI), where the flows can be calculated in all time-points, and where they are both 
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determined by the direction of the flow, and by the time-point (the flows change quite substantially 
within each single heartbeat). The various black planes indicate areas in the vessel system where a 
quantification is made. Each such quantification leads to a time-series, which is symbolically depicted 
to the left. The time-series is combined with the mechanistic model. The mechanistic model in this 
example is based on a zero-dimensional ODE model that describes how the blood flow propagates 
from each compartment in the model to the next, based on various physical properties of the 
vessels, such as volume, stiffness, compliance, etc. These particular models are based on an analogy 
between blood flows and electrical circuits and are often referred to as Windkessel models. In any 
case, by creating a cost function, which quantifies the distance between the experimental data and 
the simulations, for each parameter combination with values of all such physical properties, the 
optimal parameters can be obtained by a simple optimization algorithm. In other words, using the 
data, describing only the flows, individual patient-specific values for physical properties of the vessels 
can be obtained. Note that these obtained values are not inherently available in the raw data, but 
that the data needs advanced analysis and lots of knowledge of the physical processes involved for 
this additional information to be obtained. In this example, the new physical properties of the vessels 
(compliance, stiffness, volumes, etc) are new biomarkers, which provide additional information 
about the patient. This particular information says new things about the patient, which are useful, 
when one e.g. seeks to calculate the risk that the patient will suffer a stroke: the stiffer the vessels, 
and the smaller the effective volumes, the higher risk for the patient to suffer a cardiovascular event.  

 

 

Figure 6: Overview of some of the most important sub-models that will be included in the multi-level, 
multi-time-scale, and multi-species models used within the PRECISE4Q project. 

 

Multi-level, multi-time-scale, mechanistic, and multi-species (M4) modelling to simulate different 
scenarios  

As is indicated in Fig 6, mechanistic models can be combined with each other. In the figure, you see a 
particular combination that will be done in the PRECISE4Q project: the blood flow models will be 
combined with mechanistic models for each of the main organs that either secrete or take up things 
to/from the blood. For instance, the adipose tissue takes up certain metabolites (such as glucose and 
fatty acids) during postprandial conditions following a meal, and give back certain metabolites (fatty 
acids but not glucose) during fasting conditions long after a meal is over. Similar uptake and release 
properties are present for e.g. the heart, the liver, the brain, and the pancreas. In previous projects, 
we have developed models for each of these organs individually, and they are now being combined 
into a single interconnected model. An example of what such a model can do is seen in Fig 7. On the 
long-term time-scale (months), the model can describe slow processes like weight-loss. On the 
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shorter time-scale (hours), the same model can describe how a meal is digested, by e.g. looking at 
the time-varying glucose uptake in one of the organs. On the shortest time-scale, one can look at 
how intracellular processes, such as protein signalling phosphorylation events, happen within 
seconds or minutes after a hormone has reached a target cell. All of these processes can be 
described by the same model, and as can be seen in Fig 7, the model (line) can describe the data 
(dots) with a good quality, both for healthy conditions (blue) and type 2 diabetes (T2D, red). We also 
have a corresponding model for mice, and a scaling between them, meaning that the resulting model 
is both multi-time-scale, mechanistic, multi-level, and multi-species (M4).  

 

 

Figure 7: Overview of the capabilities of our multi-time-scale, multi-level and mechanistic models, to 
be used within the PRECISE4Q project.  

  

In addition to these already mentioned models, perhaps most relevant for modelling to help prevent 
stroke, there are also models for prediction of clinical outcome, and models that are more useful for 
modelling in the acute treatment phase. CUB has developed a biophysiological model of brain 
perfusion that integrates individual patient-specific imaging data and boundary conditions (e.g. blood 
pressure, intracranial pressure, etc.). This model computes flow volumes, velocities, and perfusion 
pressures for different brain areas. This is the first brain circulation model that integrates individual 
stroke patient neuroimaging data and enables simulation of brain blood flow and perfusion based on 
vascular pathology such as stenosis and occlusion. The model has the advantage that it can be 
adapted to individual patient data derived from medical neuroimaging sources. The model also 
allows incorporating vessel segments into the model/planar graph to examine their effect in the 
cerebral vasculature and/or to supplement missing medical data/information. Taken together, the 
tool provides a dynamic and individualised simulation model for the brain circulation, integrating 
individual patient data, and enabling simulation of blood flow and perfusion in stroke. 

Importantly, this model is based on routine clinical imaging. Thus, it is able to provide individual data 
for a precision medicine approach without the necessity of additional time-consuming and even 
potentially harmful approaches used today in perfusion imaging. 

However, while this mechanistic model can incorporate some of the features available in current 
dataset and predict the time-evolution of key biomarkers in a patient-specific manner, there are still 
many pieces of data that these mechanistic models cannot make use of. Using fusion methodologies, 
the outputs of our mechanistic model along with the data not accommodated by our mechanistic 
models will need to be combined with machine learning approaches to create hybrid stroke models. 
This will allow precise personalized predictions for stroke treatment and outcome.  
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 3.3 Proposed general schemes for hybrid modelling 

The main schemes available for hybrid modelling are outlined in Figure 3. The first option is parallel 
models (Fig 3A), where each of the ingoing models co-exist with the other, but where there is no 
cross-talk between them. This can e.g. be done by just putting the different models in the same file, 
and is in many situations a good enough solution, albeit it is almost not to be considered as an actual 
hybrid model. The second option is called sequential hybrid modelling (Fig 3B), which is done if the 
output of one of the two models produces some of the inputs used by the other model. This 
approach is also called a staged hybrid model, which is the terminology we used in the PRECISE4Q 
application. Sequential modelling can also be done in a reciprocal manner, where the output to the 
second model serves as the input to the first model, for each step in the model simulations. Such 
models are also called iterative hybrid models, which is the name we used in the application. Finally, 
the last option for hybrid modelling is called blended modelling (Fig 3C). Then the two models have 
been fully merged with each other, into a combined model, that cannot be separated. In the 
application, we used the term blended modelling. Let us now consider how machine learning, 
bioinformatics, and multi-level mechanistic modelling can be combined to obtain the two main tasks 
needed in the PRECISE4Q project: a) calculation of risk factors, b) simulation of scenarios.  

 

4 Our approach for hybrid modelling for calculation of 
outcomes and risk factors 
The approach that we will take for the hybrid modelling, when calculating risk scores and diagnoses 
is outlined in Fig 8. As can be seen, there are two types of hybrid modelling approaches taken: 
blended modelling (Step 1), and sequential modelling (Step 2) (Fig 3).  

The blended hybrid modelling is done by introducing a statistical and phenomenological component 
into the mechanistic model. In practice, this will be done by using a modelling methodology called 
Nonlinear Mixed-Effects Modelling (NLME). More specifically, in NLME models, there is the possibility 
to introduce covariates into otherwise normal nonlinear ODE models. These covariates impact the 
value of the parameters in a phenomenological fashion, described by a function. This function can 
e.g. be something as simple as a sub-division into two distributions, in the case of a Boolean 
covariate. Say e.g. that some of the parameters in the mechanistic blood flow model (Fig 5) are 
dependent on the gender of the patient. If that is so, the gender of the patient is the covariate. The 
data used for estimation of the parameters will then be subdivided into two parts: one for males and 
one for females. Each gender will then get a specific distribution for those parameters where the 
covariate is specified as having an effect. A slightly more advanced example is the case where the 
covariate is continuous. Such a covariate could e.g. be the age of the patient. The age is a property of 
the patient that does impact the mechanistic parameters (such as the compliance), but we may not 
yet understand all the mechanisms involved in that dependency. If that is the case, the age should be 
introduced as a covariate. One will then need to postulate a phenomenological formula for how the 
covariate is impacting the parameter: choosing between such options as a linear dependency, a 
saturated dependency (when there is a maximal impact), a step-wise dependency (where there is a 
sudden jump in a affect at a specific age), etc. This is then a phenomenological component, 
appearing in an otherwise normal mechanistic model. Finally, NLME models are also more statistical 
in nature, compared to normal ODE models for another reason: NLME models describe the 
distribution of each parameter across the population. This distribution is normally described by a 
covariance matrix, which specifies not only the width of the distribution, but how each parameter is 
correlated with the other parameters. In practice, this correlation matrix is obtained at the same 
time as each individual patient, by formulating a joint likelihood function in the estimation step, and 
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by introducing the additional assumption that the parameter values across the population should 
follow a certain predefined type (such as normal or log-normal distribution, etc). This additional 
assumption implies that the parameters will be more well-determined in the case of non-informative 
data (where the data for an individual patient is insufficient to have well-determined values for all 
parameters), as demonstrated in e.g. (Karlsson et al., 2015). (Karlsson et al., 2015) also contains a 
good introduction to the field of NLME, with all the central equations introduced, with practical tips 
on software, with guidelines on when it is beneficial to use it compared to just using ODE models, 
and with concrete examples that illustrate the benefits.  

The sequential hybrid modelling is the second step of the proposed approach (Fig 8). In this step, all 
the new biomarkers obtained using either NLME and the mechanistic models (Fig 5, and above), or 
using the bioinformatics network modelling (Fig 4), are combined with all the other data, containing 
the rest of the biomarkers. All these biomarkers are then combined into a classical machine learning 
model, such as a Bayesian Graphical Network, a neural network, etc (see Section 2.1). The machine 
learning algorithm is trained based on the large clinical study data available in PRECISE4Q (handled in 
WP2 and WP3), where both all or many of the biomarkers are measured, and where patient outcome 
is available. In PRECISE4Q, the main outcome of interest is e.g. whether the patient suffered a stroke 
within the next pre-defined time-period (e.g. 2 years), but the outcome can be changed without any 
changes to the hybrid architecture used (Fig 8).   

 

 
Figure 8: Outline of our approach for hybrid modelling, when calculating risk scores, diagnosis, etc, of 
the patient as he/she is at the time of examination. 

 

5 Our approach for hybrid modelling for simulation of 
scenarios 
The second type of usage for our hybrid modelling is the simulation of scenarios. Our strategy for 
how these simulations will be done is outlined in Fig 9. As can be seen, there are 8 steps involved.  
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In Step 1, the data available for the patient that can be entered into the NLME model is identified. 
Say e.g. that 4D-flow MRI data and some metabolic plasma levels (glucose and triglycerides) are 
available, that the age and gender are available, but that some other key variables for the model 
have not been measured (e.g. blood pressure and fatty acid levels). In Fig 9, the available variables 
are symbolically represented by filled blue circles, and the unavailable variables by non-filled circles.  

In Step 2, the non-filled circles are filled in by the usage of imputation or machine learning. In other 
words, using the large cross-sectional data available in PRECISE4Q, likely values of the non-measured 
variables can be estimated. Imputation can e.g. be done by finding the most similar patient, and 
taking his/her values, by using the covariance matrices available in the NLME models, or by simply 
taking the population average values. More advanced machine learning approaches could develop 
specific models for how to map the measured variables to the non-measured variables, by 
considering the measured variables as inputs, and the non-measured variables as outputs (Fig 1B).  

In Step 3, the additional values that are needed to simulate the model are added. In Fig 9, these 
values are symbolized by the filled grey circles. There are different approaches needed for this step. 
For certain parameters, they can be trained from the available data. This is the case, e.g. for the 
parameters in the blood flow model, which can be trained from the 4D-flow MRI data (Fig 5). In other 
cases, parameters have to be taken from either literature values (if they are available as 
measurements from e.g. a standard human), or one simply needs to estimate a start guess based on 
experience from previous models. All these approaches imply an uncertainty in the chosen values, 
meaning that many sets of parameters will be available for the same patient.  

In Step 4, all the parameters and values obtained so far are used to initiate the M4 model. The 
resulting model is personalized, and is thus sometimes referred to as a digital twin of the patient.  

In Step 5, the personalized model is used to investigate different scenarios. Such scenarios could e.g. 
those depicted in Fig 7, where one can see the predicted response to different drugs and alterations 
in diet.  

In Step 6, these simulations are read out, and the relevant biomarkers and other interesting model 
properties are analysed. Biomarkers are those that can go into the risk and diagnosis calculations, but 
there are also many other variables that could be interesting to investigate. Say e.g. that the 
simulation shows a decrease in inflammation and body fat upon a change in diet. One would then 
like to know why these positive effects, which will lower the risk of having a stroke, are seen. That 
question can be answered by inspecting more detailed simulations, that reveal the precise 
mechanisms and processes that are involved in responding to the diet, and how these mechanisms 
come into play for this particular patient. Those analyses are interesting and useful, even though they 
may not be explicit biomarkers, that can be used to calculate the updated risk.  

In Step 7, a similar imputation or machine learning scheme as in Step 2 is used to infer values for the 
other biomarkers needed for the risk engine (Fig 8). These remaining data consist of omics values and 
other non-mechanistic parameters not given by the model output, and they are symbolically 
represented by orange and green filled circles respectively.  

In Step 8, the full set of data for the chosen time point are used as input into the hybrid risk 
calculation model (Fig 8), which allows us to infer how e.g. the risk of suffering a stroke has changed 
in the simulated scenario.  

Using these 8 steps, one can thus obtain a personalized model for a patient also in the case of non-
complete data, and use the model to both be able to simulate various scenarios, answer the question 
of why the obtained results are predicted, and calculate the updated risk at each timepoint in the 
simulated scenarios. This is only possible with the usage of a hybrid modelling scheme, such as the 
one outlined in Fig 9.  
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Figure 9: Outline of our approach to simulation of scenarios, using our new hybrid models.  

 

6 Summary and outlook 
In this review, which constitutes D4.4 in the PRECISE4Q project, we have outlined how machine 
learning, bioinformatics, and mechanistic modelling will be combined in this project. The background 
section outlined why hybrid modelling is such a beneficial idea (Fig 2), and what the main available 
approaches are to such hybrid combinations (Fig 3). In Section 2, we reviewed the three modelling 
approaches: bioinformatics and machine learning (Fig 4) and multi-level mechanistic models (Fig 5-7). 
In Section 3 and in Fig 8, we outlined how the hybrid modelling will be done to be able to calculate 
risk scores and obtain diagnoses. The main idea is to do initial analysis of mechanistically understood 
data and covariates using advanced NLME approaches (which constitutes a blended hybrid modelling 
approach), to analyse omics data using bioinformatics and network analysis, which will lead to new 
biomarkers. These biomarkers will then be used as additional input into the machine learning 
models, which are the models that in the end calculate the risk scores, such as the risk of suffering a 
stroke within the next 2 years. Finally, in Section 4 and Fig 9, we outlined an 8-step approach to how 
we can use our hybrid models to both simulate scenarios, answer the question of why the predicted 
scenarios are believed to be the outcome, and estimate the risk at each timepoint in the simulated 
scenarios.  

There are multiple usages of these hybrid modelling possibilities. The intended usages in PRECISE4Q 
are outlined in D4.1 and D4.2 where updated use cases have been identified. In the next couple of 
steps of this project, we will make use of the more and more synthesized databases from WP3, to 
train and develop our mathematical hybrid models (Step 1-2 in Fig 2). Then, in WP5, we will test and 
evaluate the performance of our new models on data coming from new clinical studies (Step 3, in Fig 
2).  
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