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Executive	Summary	
Based	on	the	experiences	during	the	project	and	state	of	the	art	work,	we	describe	some	of	the	aspects	
we	 consider	 important	 when	 harmonizing	 and	 integrating	 data	 from	 heterogeneous	 sources.	 We	
briefly	comment	on	the	ethical	and	legal	challenges	regarding	data	access	and	sharing	and	we	focus	
on	the	technical	ones	related	to	data	harmonization	and	integration.	

Precise4Q	has	 faced	 the	 challenge	 to	 integrate	 clinical	 data	 that	were	highly	diverse	 regarding	 the	
following	source	characteristics:	(i)	different	clinical	disciplines,	(ii)	different	institutions	across	Europe,	
(iii)	different	degrees	of	structure	(from	free	text	to	structured	data),	(iV)	different	languages	and	(V)	
different	data	acquisition	contexts	and	purposes.	

Precise4Q	 aimed	 at	 improving	 stroke	 management	 through	 data-driven	 predictive	 models,	
implemented	 to	 offer	 personalized	 solutions	 to	 patients	 in	 all	 stroke	 phases	 from	 prevention	 to	
reintegration	into	the	society,	passing	through	acute	treatment	and	rehabilitation.		

In	addition	to	all	technological	challenges	derived	from	data	heterogeneity,	data	sharing	agreements	
did	not	allow	all	data	to	be	centralised.	Instead,	data	sharing	had	to	face	the	challenge	to	include	data	
that	could	not	leave	their	source	repositories.		

Precise4Q	opted	for	a	semantic-driven	approach	and	the	use	of	federated	learning	and	remote	data	
access.	

Finally,	we	summarize	our	experiences	as	a	list	of	recommendations	that	can	serve	as	a	basis	for	future	
projects	 and	 inform	 policy	 makers,	 industry	 and	 key	 stakeholders	 for	 future	 developments	 and	
research	directions.	

The	described	work	will	be	further	revised	and	submitted	to	a	medical	informatics	journal.		
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1 Introduction	
The	benefits	of	facilitating	data	sharing	in	health	have	been	demonstrated	during	the	COVID-19	crisis.	
The	proposal	of	the	European	Commission	for	a	‘European	health	data	space’	(EHDS)	[1]	shows	the	
huge	interest	in	improving	access	to	health	data	across	Europe	for	secondary	use.		

While	data	analytics	methods	are	increasingly	offering	new	ways	to	help	optimise	operations	and	drive	
decision-making,	 regulatory	and	public	pressure	on	privacy	 issues	make	the	creation	of	 the	EHDS	a	
complex	process	[2].		

Besides	legal	aspects,	technological	issues	underlying	the	sharing	and	integration	of	health	data	are	
also	being	discussed	within	the	medical	informatics	community.	Despite	many	initiatives	and	projects	
for	 decades,	 data	 interoperability	 is	 still	 an	 unsolved	 task.	 Multiple	 health	 data	 interoperability	
standards	 such	 as	 openEHR	 [3],	 HL7	 FHIR	 [4],	 ISO	 13606	 [5],	 OHDSI	 OMOP	 [6],	 etc.	 still	 co-exist,	
supporting	sharing	of	data	from	electronic	health	records	(EHRs)	on	the	one	hand,	and	research	data	
on	the	other	hand,	but	many	implementations	for	them	are	not	necessarily	compatible.	In	fact,	many	
hospital	 information	systems	and	dedicated	 research	databases	do	not	yet	comply	with	any	of	 the	
mentioned	standards	although	efforts	are	being	made	in	that	direction.	

In	the	last	years,	there	has	also	been	a	growing	interest	and	effort	from	the	different	SDOs	in	aligning	
their	models.	Past	European	projects	like	NoE	SemanticHealthNet	[7]	worked	on	the	idea	that	there	is	
a	need	to	propose	methods	for	ontology-based	interoperability.	In	the	U.S.,	the	CTSA	ontology	group	
has	issued	a	White	Paper	on	interoperability	desiderata	[8].		

OHDSI,	 a	 multi-stakeholder,	 interdisciplinary	 collaborative	 health	 data	 sharing	 initiative	 [9],	 has	
established	an	international	network	of	researchers	and	observational	health	databases	with	a	central	
coordinating	center	housed	at	Columbia	University.	The	recent	experience	of	the	OHDSI	initiative	has	
demonstrated	how	fast	a	new	data	model	is	being	successfully	adopted	by	a	large	community	of	users	
thanks	to	being	open	source	and	providing	an	increasing	tools	ecosystem.		

Reflecting	on	the	past	and	current	data	interoperability	landscape	we	can	think	of	a	future	scenario	in	
which	 new	 data	 models,	 interoperability	 approaches	 and	 tools	 will	 emerge.	 This	 challenges	 the	
community	 to	 build	 a	 common	 pan-European	 infrastructure	 that	 facilitates	 semantic	 data	
interoperability	independently	of	specific	standards,	specifications	or	implementations.		

The	authors	 share	 the	opinion	of	many	 renowned	experts	 in	 the	 field	 that	 semantic	 resources	and	
technologies,	particularly	health	terminologies,	ontologies	and	information	models	play	a	central	role	
here.	 The	 practice	 of	 Applied	Ontology,	 i.e.	 the	 provision	 of	 formal	 descriptions	 of	 entities	 of	 the	
domain,	will	help	create	bridges	across	all	existing	representations	based	on	data	semantics	and	not	
only	on	informal	structures	or	envelopes.	This	is	also	mentioned	in	a	recent	work	in	the	context	of	the	
building	of	the	Swiss	Personalized	Health	Network	(SPHN)	[10],	in	which	the	authors	state	that	current	
trends	in	data	interoperability	have	moved	from	a	data	model	technocentric	approach	to	sustainable	
semantics,	formal	descriptive	languages,	and	processes	[11].	

Precise4Q,	an	European	project	on	stroke	management	has	faced	the	challenge	to	integrate	clinical	
data	 that	 were	 highly	 diverse	 regarding	 the	 following	 source	 characteristics:	 (i)	 different	 clinical	
disciplines,	(ii)	different	institutions	across	Europe,	(iii)	different	degrees	of	structure	(from	free	text	to	
structured	data),	(iv)	different	languages,	and	(V)	different	data	acquisition	contexts	and	purposes.	

Precise4Q	 aimed	 at	 improving	 stroke	 management	 through	 data-driven	 predictive	 models,	
implemented	 to	 offer	 personalized	 solutions	 to	 patients	 in	 all	 stroke	 phases	 from	 prevention	 to	
reintegration	into	the	society,	passing	through	acute	treatment	and	rehabilitation.		

In	addition	to	all	technological	challenges	derived	from	data	heterogeneity,	data	sharing	agreements	
did	not	allow	all	data	to	be	centralised.	Instead,	data	sharing	had	to	face	the	challenge	to	include	data	
that	could	not	leave	their	source	repositories.	Furthermore,	clinical	data	is	very	sensitive	and	therefore	
highly	controlled	under	GDPR	regulations	to	ensure	patient	data	privacy.		
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Precise4Q	opted	for	a	semantic-driven	approach	and	the	use	of	federated	learning	and	remote	data	
access.	

In	 the	 following,	 we	will	 address	 the	 technological	 challenges	 experienced	 during	 the	 project	 and	
briefly	comment	on	ethical	and	legal	issues	we	had	to	deal	with.		

Finally,	we	provide	a	list	of	recommendations	that	can	serve	as	a	basis	for	future	projects	and	inform	
policy	makers,	industry	and	key	stakeholders	for	future	developments	and	research	directions.	
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2 Main	 aspects	 when	 accessing,	 harmonizing,	 and	
integrating	healthcare	data	for	in-silico	modelling	

Below	we	describe	some	of	the	aspects	that	we	consider	relevant	when	harmonizing	and	integrating	
data	 from	heterogeneous	sources,	 from	the	ethical	and	 legal	challenges	related	to	data	access	and	
sharing	to	the	technical	challenges	related	to	data	harmonization.	

2.1 Data	access		
Despite	the	promise	to	deliver	better	healthcare,	data	sharing	 is	a	big	bottleneck	 in	healthcare	and	
biomedical	research.	Existing	datasets	are	controlled	by	a	few	researchers	at	specific	 institutions	or	
companies,	 and	 access	 for	 everyone	 else	 is	 laborious,	 costly,	 time-consuming,	 or	 just	 impossible	
despite	 the	 fact	 that	 the	 creation	 of	 nearly	 all	 health	 data	 is	 publicly	 funded	 [12].	 The	 current	
understanding	 is	 that	clinical	data	are	exclusively	collected	to	support	 individual	care	and	decision-
making,	so-called	primary	use	of	clinical	data.	This	explains	why	most	clinical	information	systems	are	
built	to	support	this	use	case,	and	electronic	health	records	are	rather	substitutes	for	the	traditional	
paper	 record	 than	data	hubs	 that	also	support	 secondary	use	cases.	The	 restriction	 to	primary	use	
scenarios	is	explained	by	personal	data	protection	as	a	fundamental	legal	interest.	Especially	sensitive	
health	data	must	therefore	be	handled	in	an	ethical	and	responsible	manner	that	protects	the	rights	
and	interests	of	data	subjects	[13].		

However,	the	collection,	processing,	storage,	and	sharing	of	personal	data	is	key	to	advancing	scientific	
research	 and	healthcare	delivery.	 Some	authors	 even	 argue	 that	 data	 sharing	 -	 beyond	healthcare	
delivery	-	 is	an	ethical	and	scientific	 imperative	[14]	and	there	are	continuing	efforts	undertaken	to	
make	 data	 more	 accessible	 to	 health	 research,	 in	 the	 European	 Union,	 for	 instance,	 through	 the	
creation	of	a	European	Health	Data	Space	[15].		

According	to	the	Swiss	Personalised	Healthcare	Network’s	(SPHN)	Ethical	Framework	for	Responsible	
Data	Processing	in	Personalised	Health	Research	[16],	there	are	four	core	ethical	principles	that	should	
guide	the	processing	of	personal	data	and	human	biological	material:	

1) Respect	 for	 Persons,	 i.e.,	 the	 rights	 and	 dignity	 of	 individuals,	 families,	 and	 communities	
contributing	personal	data	and/or	human	biological	material	 in	the	context	of	 research	and	
clinical	care,	as	well	as	any	other	type	of	data	that	can	be	useful	for	biomedical	research	must	
be	respected,	protected,	and	promoted.	

2) Privacy,	 i.e.,	 the	 privacy	 of	 research	 participants	 and	 the	 confidentiality	 of	 their	 personal	
information	must	be	safeguarded.	

3) Data	FAIRness,	i.e.,	data	that	can	be	used	for	research	purposes	and	research	results	should	
be	 made	 available	 for	 further	 research	 use	 to	 advance	 the	 common	 good	 of	 scientific	
knowledge.	

4) Accountability,	 i.e.,	 Accountability	mechanisms	 should	 ensure	 fair,	 lawful,	 and	 transparent	
processing	of	personal	data	and	handling	of	human	biological	material.	
	

In	addition	to	the	ethical	aspects,	there	are	also	a	number	of	legal	and	regulatory	considerations	when	
it	 comes	 to	 data	 access,	 use,	 and	 governance.	 Particularly	multisite	 research,	 as	 it	 is	 the	 case	 for	
PRECISE4Q,	 requires	personal	data	 to	be	 shared	between	 institutions	 and	across	 jurisdictions.	 This	
means	 that	 within	 the	 same	 project,	 different	 datasets	 are	 subject	 to	 different	 national	 data	
protection,	 privacy,	 and	 research	 ethics	 laws.	 These	 regulations	 aim	 to	 protect	 patient	 privacy,	
autonomy,	and	safety,	yet	at	the	same	time	they	may	impede	multisite	research,	particularly	when	
several	 jurisdictions	are	 involved.	For	 researchers	 it	 is	not	easy	 to	navigate	 these	different	systems	
where	definitions,	standards,	rules,	and	requirements	may	vary	significantly.		
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A	 comparative	 study	 which	 investigated	 the	 concept	 of	 data	 accessibility	 in	 data	 protection	 and	
research	 ethics	 laws	 across	 seven	 jurisdictions	 (Switzerland,	 Italy,	 Spain,	 the	 United	 Kingdom,	 the	
United	 States,	 Canada,	 and	 Australia)	 identified	 the	 requirements	 for	 consent,	 the	 standards	 for	
anonymization	or	pseudonymization,	and	adequacy	of	protection	between	jurisdictions	as	key	barriers	
for	data	sharing	[17].	The	study	also	found	differences	between	the	European	Union	(EU)	and	other	
jurisdictions	to	pose	a	particular	challenge	for	data	accessibility.	Possible	solutions	proposed	by	the	
authors	include	both	regulatory	and	technical	solutions.	

Over	 the	 course	 of	 the	 PRECISE4Q	 project,	 there	 were	 numerous	 challenges	 concerning	 data	
accessibility,	including	the	need	for	federated	learning	and	remote	data	access,	due	to	ethical	and	legal	
issues,	 and	 the	 need	 to	 comply	 with	 data	 privacy	 and	 compliance	 with	 General	 Data	 Protection	
Regulation	(GDPR)	regulations.	

It	was	therefore	a	major	effort	to	reconcile	these	principles	with	the	goals	of	PRECISE4Q.	Data	sharing	
agreements	 took	months	and	the	conditions	depended	on	each	dataset	and	 institution,	with	some	
institutions	being	more	flexible	than	others.	In	particular,	some	institutions	did	not	allow	their	patient	
data	being	stored	at	any	place	away	from	their	servers.	

Federated	 learning,	 or	 the	 training	 of	 models	 and	 machine	 learning	 algorithms	 across	 various	
decentralized	data	sources,	was	critical	for	the	completion	of	PRECISE4Q,	especially	for	those	parts	of	
the	project	where	prevention	models	were	developed.	The	data	sources	containing	the	information	
necessary	to	train	the	models	were	not	stored	in	a	single	repository	or	server,	but	rather	located	on	
different	servers	located	in	different	countries.	Therefore,	models	had	to	travel	to	these	sites,	ensuring	
interaction	with	 the	 data	 exclusively	 at	 the	 respective	 sites.	 Only	model	 parameters	 (i.e.,	 training	
results)	 left	 the	 institutions,	 so	 that	 data	 privacy	 issues,	 data	 security	 concerns	 and	 regulatory	
restrictions	were	not	violated	[18].			

It	is	known	that	data	anonymization	alone	does	not	guarantee	data	privacy	in	many	cases.	For	instance,	
imaging	 data	 cannot	 be	 fully	 anonymized,	 as	 it	 is	 possible	 to	 reverse	 engineer	 an	 algorithm	 to	
reconstruct	a	face	from	computed	tomography	(CT)	or	magnetic	resonance	imaging	(MRI)	data	[19].		
Therefore,	the	nature	and	scope	of	the	data	processing	(e.g.,	how	data	was	used,	stored	and	deleted,	
whether	ethnic	or	genetic	data	were	collected,	who	were	the	individuals	and	from	what	geographic	
area),	as	well	as	the	context	of	the	data	processing	(did	the	data	subjects	provide	a	written	consent	for	
the	research	and	did	they	know	how	to	withdraw	their	data	from	the	research)	and	finally	potential	
risks	and	measures	to	mitigate	them	had	to	be	outlined	in	a	Data	Protection	Impact	Assessment	(DPIA)	
[20].			

In	[21],	the	authors	propose	a	data-flow	protocol	that	describes	all	the	steps	to	create	an	anonymous	
(non-personal)	dataset,	incorporating	best	practice	and	providing	adaptable	steps	for	handling	data	in	
accordance	with	UK	and	EU	ethical	and	legal	framework.	

In	[12],	the	authors	state	that	although	protecting	patient	privacy	is	the	most	relevant	barrier	to	data	
sharing,	many	technical	solutions	to	this	problem	exist,	from	sophisticated	de-identification	methods	
to	highly	secure	cloud	environments.	

Focusing	on	developing	tools	for	the	automatic	de-identification	of	texts,	in	Precise4Q,	a	method	for	
the	 de-identification	 of	 free	 texts	 in	 Catalan	 and	 Spanish	 has	 been	 implemented	 [22].	 A	 severe	
shortcoming	 in	 clinical	 text	 de-identification	 is	 the	 lack	 of	 annotated	 corpora	 for	 training.	 The	
implemented	method	with	a	small	number	of	annotated	samples	was	able	to	successfully	de-identify	
most	of	the	evaluated	texts.	

	



	

Precise4Q	-			D3.10	 Page	9	of	21	 28/09/2022	

		

2.2 Data	harmonization	

2.2.1 Data	description	
After	ethical	 and	 legal	data	 sharing	agreements	are	 in	place,	 the	next	 step	 is	preparing	data	 to	be	
shared.		

Most	existing	healthcare	data	consists	of	more	or	less	structured	narratives.	But	also	structured	data	
usually	 includes	a	 large	amount	of	data	elements	 like	variables	and	values	whose	meaning	is	 in	the	
best	case	elucidated	by	some	data	dictionary,	whereas	in	the	worst	case	the	user	has	no	choice	but	to	
guess	the	meaning	based	on	the	variable	names	and	the	context	of	use	(e.g.	within	a	data	acquisition	
form).	This	is	explained	by	the	fact	that	such	data	repositories	were	devised	for	data	entry	and	data	
display	by	and	for	humans,	not	to	machines.	Consequently,	tasks	involving	the	combination	of	data	
from	multiple	data	sets	that	are	described	using	data	dictionaries	are	not	easily	automated.	

Even	 where	 data	 elucidations	 are	 provided	 by	 some	 kind	 of	 dictionary,	 crucial	 details	 of	 data	
descriptions	are	often	missing.	Examples	are	the	use	of	foreign	languages,	specific	terminologies,		local	
dialects	and	jargons,	missing	data,	mismatch	of	data	elements,	missing	data	types	or	descriptions,	use	
of	terminologies	without	specifying	the	version,	lack	of	availability	of	the	full	list	of	permissible	values,	
etc.	

This	makes	reuse	of	the	shared	information	a	difficult	and	time	consuming	task,	requiring	repeated	
interactions	with	data	owners,	which	is	often	not	easily	achievable.	

Previous	studies	have	provided	recommendations	to	guide	optimal	data	sharing	and	reuse.	One	is	[23],	
whose	CONSIDER	statement	among	others	make	the	following	recommendations:	

1. Provide	data	dictionary	documentation	 separate	 from	de-identified	 individual	patient	data.	
Since	it	does	not	contain	patient	data,	it	does	not	require	ethical	approval.	It	should	be	shared	
as	soon	as	possible	and	be	provided	as	a	machine-readable	file.	

2. For	 each	 data	 element	 provide	 its	 data	 type	 (e.g.	 numeric,	 data,	 string,	 categorical).	 For	
categorical	 data	 elements	 provide	 a	 list	 of	 permissible	 values	 and	 distinguish	 them	 from	
numeric	or	string	values.	

3. Provide	a	complete	data	dictionary	(all	elements	in	the	data	are	listed	in	the	dictionary).	Group	
data	elements	if	necessary.	Use	a	description	field	in	addition	to	the	title	to	fully	describe	the	
data	element.	

Dictionaries	 are	 useful	 for	many	 data	management	 tasks,	 such	 as	 aiding	 users	 in	 data	 conversion	
processes,	test	data	generation,	data	validation	and	storing	data	usage	criteria	[24].	Information	from	
dictionaries	is	usually	known	as	metadata	and	stored	in	metadata	registries	or	repositories	following	
metadata	standards	like	ISO	11179	[25].		

Examples	are	the	open-source	Samply	Metadata	Repository	[25],	created	to	support	the	formulation	
of	 inquiries	to	networked	biobanks	based	on	their	respective	data	elements,	or	Semantic	Metadata	
Registry	 (Semantic	MDR),	 an	 implementation	 of	 the	 ISO/IEC	 11179	 standard	 using	 Semantic	Web	
technologies	[27].		

As	mentioned	in	[28],	metadata	can	be	a	powerful	resource	for	identifying,	describing,	and	processing	
information,	but	its	meaningful	creation	is	costly.	In	addition,	the	sheer	number	of	relevant	metadata	
standards	has	led	to	oversaturation	and	rejection	[28].	

The	FAIR	principles	proposed	by	Wilkison	et	al	[29]	have	attracted	much	attention	as	they	define	how	
to	 make	 data	 (and	 in	 general	 digital	 objects	 [30])	 more	 Findable,	 Accessible,	 Interoperable	 and	
Reusable.	These	principles	make	a	clear	distinction	between	data	and	metadata.		

The	FAIR	Data	Point	(FDP)	is	an	approach	to	exposing	semantically-rich	metadata	for	a	wide	range	of	
data	 (also	 known	as	digital	 objects)	 in	 a	 FAIR	manner	 [31].	 Its	main	goal	 is	 to	establish	a	 common	
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method	for	metadata	provisioning	and	accessing	that	is	compliant	with	the	FAIR	principles.	It	can	be	
used	 to	 expose	 metadata	 of	 datasets,	 but	 also	 from	 other	 digital	 resources	 (e.g.	 ontologies,	 ML	
workflows,	etc.).	 It	makes	use	of	widely	used	vocabularies	 like	DCAT,	FOAF	and	Dublin	Core	Terms.	
Moreover,	metadata	records	have	references	to	ontological	annotations	using	external	ontologies	(e.g.	
within	the	medical	domain,	using	the	SNOMED	CT	concept	for	certain	disease),	which	ideally	convey	
computable	(logic-based)	axioms	and	definitions.	A	reference	implementation	is	provided	in	[32].	In	
the	 FDP,	 metadata	 is	 represented	 in	 RDF	 [33],	 being	 the	 storage	 usually	 an	 RDF	 store.	 Thus,	
representing	metadata	 following	 the	 FDP	 approach	 will	 benefit	 from	 Semantic	Web	 technologies,	
facilitating	the	automatic	and	meaningful	combination	of	data	from	multiple	data	sets.	

2.2.2 	Semantic	data	harmonization	and	integration	
Once	data	has	been	shared,	independently	of	its	data	format	or	syntax	it	requires	to	be	semantically	
harmonized	in	order	to	be	used	for	comparison.	Data	might	be	provided	at	different	levels	of	detail,	
using	different	protocols,	(e.g.	fever	measured	in	different	body	sites)	different	units	of	measurements	
(e.g.	body	temperature	measured	in	degree	Fahrenheit	vs.	Celsius),	etc.		

Semantic	harmonization	is	the	process	of	combining	multiple	sources	and	representations	of	data	into	
a	form	where	items	of	data	share	meaning	[34].	Harmonized	data	allows	single	given	questions	to	be	
asked	and	answered	across	the	data	as	a	whole,	without	the	need	to	modify	or	adapt	queries	for	a	
given	data	source,	invaluable	as	a	tool	for	researchers	[35].	

Semantic	harmonization	is	a	time-consuming	task,	which	requires	consultation	and	agreement	across	
a	wide	range	of	stakeholders,	especially	when	data	serves	multiple	purposes.	It	is	therefore	essential	
to	properly	describe	all	data	sources	with	the	exact	meaning	of	every	data	element	 included	in	the	
dataset.	Metadata	 registries	 such	as	based	 in	FDP	will	 facilitate	data	harmonization.	Metadata	 can	
support	data	discovery	and	inter-comparison	across	variables	or	data	elements	from	several	sources.	
Guided	 by	 the	metadata,	 ETL	 (extraction,	 transform,	 load)	 processes	 can	 then	 be	 implemented	 to	
semantically	 harmonize	 clinical	 data.	 For	 clinical	 data	 representation	 multiple	 options	 can	 be	
considered.	Most	of	 them	are	based	on	 the	use	of	 a	 common	data	model	 like	 ISO/CEN	13606	 [5],	
openEHR	[3],	OMOP	CDM	[6],	being	the	two	first	ones	devised	for	exchanging	data	for	patient	care	and	
the	latter	one	for	research.	A	specification	based	on	Semantic	Web	principles	[36]	is	HL7	FHIR	[4].	It	is	
based	on	a	content	model	in	the	form	of	modular	components	named	‘resources’	and	a	specification	
for	their	exchange	using	REST	services.		

Existing	standards	differ	in	their	purpose,	data	model	and	modelling	approach.	However,	it	does	not	
mean	that	some	of	them	can	not	be	conceptually	and	technically	compatible	[37].	In	addition,	their	
adoption	has	shown	that	much	effort	is	still	needed	to	achieve	interoperability	at	the	semantic	level	
[38].		

Nevertheless,	there	is	recent	evidence	that	aligning	data	models	from	existing	standards	is	possible.	
Examples	are	the	Vulcan	project	[39]	for	transforming	FHIR	data	into	OMOP,	and	the	Common	Data	
Model	 Harmonization	 (CDMH)	 project	 [40]	 for	 mapping	 and	 translating	 observational	 data	
represented	using	research	oriented	data	models	like	OMOP	and	i2b2	[41]	into	FHIR	and	CDISC	SDTM	
[42]	specifications	[43].		

In	line	with	the	need	to	facilitate	interoperability	among	existing	data	modelling	standards,	already	in	
2013,	 the	Yosemite	project	 recognised	 the	need	 to	provide	 translations	between	data	models	 and	
vocabularies	and	proposed	RDF	as	‘universal	healthcare	exchange	language’.	The	Yosemite	manifesto	
[44]	 states	 that	 existing	 standard	 healthcare	 vocabularies,	 data	 models,	 and	 exchange	 languages	
should	be	leveraged	by	defining	standard	mappings	to	RDF,	and	any	new	standards	should	have	RDF	
representations.	In	fact,	HL7	FHIR	provides	RDF	as	one	standard	data	format	approaching	the	Semantic	
Web	vision	[36].	
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Thus,	given	that	existing	standard	data	models	will	coexist	with	new,	non-standard	ones,	developed	
by	many	organizations,	there	is	the	need	to	facilitate	data	interoperability	also	beyond	of	the	particular	
standards,	specifications	or	data	representations.	

Semantic	 data	 harmonization	 and	 integration	 crucially	 depend	 on	 technologies	 and	 resources.	 In	
particular,	semantic	web	technologies	such	as	ontologies	and	semantic	languages	like	OWL	and	RDF	
have	contributed	much	to	achieve	semantic	interoperability	in	health	information	systems	[45].	Formal	
Ontologies,	which	we	understand	as	“precise	mathematical	formulations”	of	the	entities	of	a	domain	
and	the	way	how	they	are	related,	are	well-established	to	support	knowledge-intensive	tasks	related	
to	EHR	systems	[46].	Formal	ontologies	given	their	integration	capabilities	and	in	concert	with	domain	
terminologies	(often	known	as	controlled	Vocabularies	(CVs)),	play	a	central	role	in	bridging	across	all	
existing	representations	based	on	the	semantics	of	data	[48],	regardless	of	the	structure	or	‘envelope’	
used	[47].		

Up	until	now,	numerous	project-specific	ontologies	have	been	built	without	any	 interoperability	or	
standardization	 interest.	 They	 are	 maintained	 for	 the	 duration	 of	 a	 certain	 project	 and	 are	 then	
abandoned.	 They	 do	 not	 refer	 to	 foundational	 ontologies,	 nor	 do	 they	 re-use	 content	 from	 other	
domain	ontologies.	The	fact	that	the	foundational	ontology	BFO	2020	has	become	an	 ISO	standard	
shows	the	interest	in	building	standardized	ontologies	in	the	field	of	science	and	engineering	[49].		

Standardization	has	also	been	an	issue	in	biomedical	terminologies,	particular	in	the	case	of	SNOMED	
CT,	 which	 set	 off	 as	 an	 international	 terminology	 for	 EHRs,	 but	 which	 then	 increasingly	 adopted	
principles	of	formal	ontology	and	logic,	so	that	it	can	now	be	seen	as	clinical	ontology	of	high	coverage	
and	granularity	[50].		

This	was	also	one	of	the	main	outcomes	of	the	FP7	SemanticHealthNet	NoE	[7],	that	highlighted	the	
importance	of	formally	representing	the	meaning	of	clinical	information	and	differentiated	between	
their	 structural	 and	 semantic	 representations	 [51]	 with	 the	 ultimate	 goal	 of	 achieving	 semantic	
interoperability	independently	of	the	standard	or	data	representation	used.		

This	has	also	been	one	of	the	main	results	of	Precise4Q,	which	has	specified	and	partially	implemented	
a	 semi-automatic	method	 for	 data	 harmonization,	 guided	 by	 semantics	 independent	 of	 the	 target	
representation	model.	It	is	based	on	the	following	principles:	

1. A	standardized	and	simple	data	specification	allows	harmonization	for	research	purposes	
2. This	has	to	be	done	semi-automatically,	provided	that	formal	ontology	guides	the	creation	of	

semantic	data	models	that	are	independent	of	a	specific	clinical	 information	representation	
standard.		

The	core	of	the	method	is	an	ontology-based	data	model,	which	uses	a	top-level	ontology	in	order	to	
standardize	data	modelling	and	to	ensure	 interoperability	among	different	ontologies.	SNOMED	CT	
plays	the	role	of	a	reference	ontology	to	represent	the	medical	domain	knowledge.		

Having	 all	 data	 elements	 sufficiently	 described	 using	 a	 specific	 structured	 representation,	 data	 is	
automatically	transformed	into	the	desired	target	data	model.	PRECISE4Q	used	OMOP	CDM	as	target	
representation,	 but	 other	models	 such	 as	HL7	 FHIR	would	 be	 equally	 eligible.	 Through	 predefined	
transformation	rules,	data	are	automatically	generated	in	RDF	according	to	the	ontological	model	of	
OMOP	[52].	Through	SPARQL	queries,	OMOP	RDF	data	can	be	also	translated	into	relational	database	
format.		

The	 ontology-based	 data	 model	 allows	 standardizing	 the	 representation	 of	 data	 meaning,	
independently	of	the	particular	structure	or	syntax	from	the	original	data.	Thus,	the	model	acts	as	a	
bridge	 between	 data	 representation	 standards.	 Based	 on	 the	 ontology	model,	 a	 set	 of	 predefined	
transformation	rules	are	in	charge	of	transforming	data	into	RDF	according	to	the	specific	target	data	
model.		
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Having	a	precise	definition	of	the	data	will	support	the	integration	of	similar	data	from	heterogeneous	
sources.	Depending	on	the	use	case,	a	certain	representation	of	the	data	will	require	doing	some	data	
transformations	(e.g.	use	of	certain	units,	harmonization	of	value	ranges,	etc.).	Examples	of	well-known	
efforts	for	building	agreed	representations	of	data	are	the	Patient	Summary	and	e-Prescription	within	
the	epSOS	project	[53].	However,	not	always	it	is	possible	or	even	necessary	to	agree	on	certain	data	
representation,	but	different	data	granularities	are	supported	by	ontologies	 (e.g.	allowing	different	
data	granularities	when	representing	pain	as	depicted	by	Figure	1).	

	

Figure	1	–	Semantic	data	harmonization	example.	Three	heterogeneous	representations	of	pain	but	all	of	
them	subtypes	of	the	SNOMED	CT	concept	for	pain	

	

In	[11],	the	authors	recognize	the	coexistence	of	multiple	data	models.	They	highlight	that	there	is	no	
one-size-fits-all	 data	 model	 and	 that	 current	 trends	 in	 data	 interoperability	 have	 moved	 from	 a	
technocentric	 data	 model	 approach	 to	 sustainable	 semantics,	 formal	 descriptive	 languages,	 and	
processes.		

As	part	of	the	building	of	the	Swiss	Personalized	Health	Network	(SPHN)	[10]	they	are	implementing	a	
semantic-driven	data	model-independent	 framework	 for	 semantic	 interoperability.	 This	 framework	
departs	from	concepts	(variables	or	data	elements)	encoded	using	international	standards	such	as	ICD-
10,	SNOMED	CT,	LOINC,	or	ad	hoc	knowledge	representation	using	RDF	for	representing	data.	Then,	
RDF	data	is	converted	to	any	target	data	model	needed.			

From	the	above	described	approaches	and	experiences	we	can	take	some	important	messages:			
	

1. The	need	for	a	semantic	definition	of	the	original	data	(e.g.	using	existing	terminologies	and	
ontologies)	

2. Flexible	 descriptions	 of	 data,	 agnostic	 regarding	 any	 data	 model	 that	 facilitates	 data	
conversion	into	other	representations	

3. Need	 to	 implement	 specific	 converters	 for	 any	 target	 data	 specification	 and	 format	 (e.g.	
OMOP,	FHIR,	but	also	XML,	JSON,	etc.)	

	
The	first	and	the	second	items	are	the	most	difficult	to	address.	The	need	for	a	semantic	definition	of	
the	 original	 data	 highlights	 the	 need	 for	 rich	 metadata	 repositories	 and	 good	 data	
terminology/ontology	data	mapping	tools	to	support	the	semantic	standardization	of	the	metadata.		
	
As	previously	mentioned,	metadata	should	include	not	just	the	name	of	the	data	elements	but	also	
their	descriptions.	Both	should	support	the	mapping	of	the	data	elements	to	existing	terminologies	
and	ontologies	and	thus	facilitate	semantic	data	harmonization.		
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Manual	mapping	is	time-consuming	and	error-prone.	Text	mining	tools	and	terminology	servers	are	
used	to	support	the	automatic	mapping	of	data	to	ontologies	or	vocabularies.	On	the	one	hand,	text	
mining	systems	performance	depends	on	the	available	vocabularies	and	corpora,	as	well	as	language	
models	derived	from	the	latter.	Collections	of	technical	terms	that	primarily	represent	the	language	
used	in	the	clinic	-	so-called	user	interface	terminologies	-	,	together	with	open	annotated	corpora	are	
essential	to	improve	performance	on	text	mining	tools	[8].		
State	of	the	art	tools	for	mapping	free	text	to	SNOMED	CT	are	mostly	based	on	rules	but	a	combination	
of	machine	learning	approaches	with	rule-based	ones	could	be	a	way	to	improve	performance	[54].	
On	 the	other	hand,	 terminology	 servers	 like	Snowstorm	 for	 SNOMED	CT	 [55],	 can	be	used	 to	map	
structured	data	to	an	ontology	or	vocabulary.	In	[56],	a	mapping	approach	where	structured	text	and	
a	terminology	server	are	used	together	is	described.	
	
In	 addition,	 although	 SNOMED	 CT	 is	 considered	 a	 reference	 terminology	 for	 medicine,	 and	 an	
important	resource	to	achieve	semantic	interoperability	in	healthcare,	it	is	not	sufficient	for	encoding	
all	medical	domain	knowledge,	because	 its	coverage	for	specific	medical	domains	 is	 limited	[57].	 In	
fact,	when	data	 is	encoded,	often	different	ontologies	and	CVs	or	 terminologies	are	used.	Besides,	
across	different	data	sources,	multiple	vocabularies	and	ontologies	might	be	used	for	encoding	the	
same	concept	(e.g.	using	SNOMED	CT	and	ICD-10	for	encoding	certain	diseases).	
	
Thus,	it	is	necessary	to	make	available	resources	like	ATHENA,	part	of	the	OMO	approach	[58]	that	acts	
as	a	common	repository	of	biomedical	vocabularies	and	provides	equivalences	among	concepts	from	
several	of	them.	Among	others,	ATHENA	uses	UMLS	[59],	which	integrates	more	than	214	vocabularies	
and	ontologies.	Other	works	 like	 [60]	provide	mappings	 from	OMOP	vocabularies	 to	OBO	Foundry	
ontologies	[61].	Finding	correspondences	between	concepts	from	vocabularies	and	ontologies	is	not	
trivial	and	usually	requires	manual	validation.	Contributing	to	their	coordinated	building	by	following	
certain	 criteria	 or	 principles	 like	 ontologies	 from	 the	 OBO	 Foundry	 [61],	 and	 ideally	 within	 an	
overarching	 ontological	 framework,	 will	 facilitate	 their	 integration.	 In	 this	 line,	 the	 Clinical	 and	
Translational	Science	Ontology	Group	(CTSA)	proposes	an	increased	investment	in	the	research	and	
development	of	ontologies	to	address	the	limitations	in	their	use	with	EHRs	[8].	
	
The	second	message	refers	to	the	description	of	the	data	in	a	flexible	way,	which	is	agnostic	regarding	
any	data	mode	and	that	facilitates	data	conversion	into	other	representations.	Here,	it	is	necessary	to	
link	 previously	 identified	 concepts	 with	 informational	 aspects,	 contextualizing	 them	 (e.g.	 for	 the	
identified	 concept	 ‘neuropathic	 pain’,	 we	 need	 to	 know	 when	 (e.g.	 12/01/2007),	 how	 (e.g.	
‘conversation	with	 the	patient’)	 and	by	whom	 (e.g.	 ‘the	patient’)	 this	was	 stated).	Using	high-level	
categories	and	relations	as	provided	by	a	top-level	ontology	can	support	us	to	link	the	different	pieces	
in	a	standardized	way	[48,62].	In	addition,	using	RDF	as	a	representation	language	provides	a	flexible	
data	model	and	serves	as	 the	 ‘lingua	 franca’	 for	exchanging	machine-processable	 information.	RDF	
does	 not	 depend	 on	 a	 specific	 semantic	 standard,	 but	 allows	 using	 different	 ontologies	 and	
vocabularies.	Ontologies	provide	the	formal	definition	that	allows	both	machines	and	human	beings	
to	understand	the	 intent	of	the	 information	[63].	 In	addition,	RDF	can	be	used	together	with	other	
formalisms	when	needed	for	other	types	of	 information	and	purposes	(e.g.,	Guidelines	Interchange	
Format	for	guidelines	and	Java	Business	Process	Model	for	workflows)	[11].	
	
Additionally,	specific	converters	of	the	data	into	other	formats	such	as	OMOP,	HL7	FHIR	or	any	other	
data	model	or	syntax	can	be	implemented.	There	are	already	works	for	transforming	RDF	data	into	
relational	data	models	or	standard	common	data	models	like	OMOP	[63]	or	HL7	FHIR.	The	use	of	a	top-
level	 ontology	 for	 representing	 data,	 as	 well	 as	 vocabularies	 and	 ontologies	 for	 encoding	medical	
domain	knowledge,	will	facilitate	the	implementation	of	the	specific	converters.	 
 
Finally,	knowledge	graphs	represented	in	RDF	enable	the	use	of	graph	algorithms	and	machine	learning	
techniques	 to	 find	 hidden	 patterns	 in	 the	 data	 and	 infer	 new	 knowledge	 [64].	 They	 are	 more	
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computationally	efficient	when	data	is	very	interconnected	and	scale	to	very	large	sizes	[65].	Recent	
studies	advocate	their	use	as	a	tool	for	explainable	machine	learning	[66].		

In	PRECISE4Q,	data	represented	in	RDF	is	stored	in	a	graph	database	and	can	be	queried	by	using	a	
REST	API	or	a	specific	query	system	for	non-experts	 in	semantic	 technologies.	 In	addition,	we	have	
begun	to	exploit	the	structure	of	the	data	graph	to	support	machine	learning,	by	applying	algorithms	
that	facilitate	data	exploration	and	analysis	like	page	rank	and	community	detection	algorithms.		
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3 Summary	of	recommendations		
Based	 on	 the	 Precise4Q	 data	 sharing	 experiences	 and	 current	 state	 of	 the	 art	 research	 and	
implementations	 in	 data	 sharing,	 we	 summarize	 what	 we	 consider	 the	 most	 relevant	
recommendations	from	the	issues	discussed	above:	

1. Data	 should	 be	 described	 by	 rich	metadata	 (data	 about	 the	 collected	 data)	 and	 the	 latter	
should	be	shared	as	soon	as	possible	since	it	does	not	contain	patient	data	and	does	not	require	
ethical	approval.		
	
Metadata	is	a	powerful	resource	for	 identifying,	describing	and	processing	data.	 It	 is	crucial		
for	 semantic	harmonization	and	data	 integration.	 	Data	providers	should	provide	metadata	
such	as	name	and	description	of	the	data	elements,	their	data	types	and	 list	of	permissible	
values.	Based	on	this	metadata,	automatic	methods	can	be	implemented	for	their	semantic	
enrichment	such	as	annotating	them	with	identifiers	from	CVs	and	ontologies.	

	
2. Metadata	should	follow	the	FAIR	principles	and	be	based	on	semantic	metadata	standards.	

	
Using	Fair	Data	Points	(FDPs)	for	representing	and	sharing	metadata	has	been	proposed	by	the	
authors	of	the	FAIR	recommendations.	It	is	a	promising	solution	to	follow	a	common	approach	
to	 publish	 semantically-rich	 and	 machine-processable	 metadata	 according	 to	 FAIR.	
Representing	metadata	using	FDPs	will	benefit	from	Semantic	Web	technologies,	facilitating	
the	automatic	and	meaningful	combination	and	integration	of	data	from	multiple	and	possibly	
heterogeneous	data	sets.	It	is	important	to	highlight	that	FDPs	address	interoperability	of	the	
metadata	but	not	of	the	data.	

	
	

3. Metadata	and	data	should	be	described	using	ontologies	or	terminologies	as	far	as	possible.	
	
Data	and	metadata	should	be	mapped	to	CVs	and	ontologies	(e.g.	SNOMED	CT,	LOINC,	etc.).		
Automatic	 methods	 based	 on	 text	 mining	 can	 be	 implemented	 to	 support	 the	 mapping	
process,	e.g.	via	terminology	server	implementations.	
	

4. The	construction	of	ontologies	and	terminologies	should	be	better	coordinated.		
	
An	 overarching	 ontological	 framework,	 e.g.	 a	 foundational	 ontology,	 can	 facilitate	 their	
integration.	
Since	data	and	metadata	will	be	encoded	using	multiple	CVs	and	ontologies,	correspondences	
between	 their	 terms	 and	 concepts	 must	 be	 established.	 Contributing	 to	 the	 coordinated	
building	of	CVs	and	ontologies	by	following	certain	criteria	or	principles	like	ontologies	from	
the	OBO	Foundry,	and	ideally	within	an	overarching	ontological	framework,	will	facilitate	their	
integration.	Thus,	increased	investment	in	ontology	research	and	development	should	aim	at	
best	practices	and	engineering	standards.			
	

	
5. Data	 should	 be	 described	 in	 a	 flexible	 way	 to	 facilitate	 data	 conversion	 into	 multiple	

representations	and	follow	FAIR	principles.		
	
RDF	allows	the	representation	of	data	using	a	flexible	data	model	and	facilitates	accomplishing	
FAIR	 data	 principles.	 In	 addition,	 RDF	 can	 be	 used	 together	 with	 other	 formalisms	 when	
needed	for	other	types	of	information	and	purposes		
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6. Bridging	 methods	 for	 transforming	 data	 into	 other	 standardized	 or	 not	 representations	

should	be	based	on	ontologies.	
	
Since	 there	 is	 no	 universal	 agreed	 standard	 or	 representation	 for	 clinical	 data,	 specific	
converters	need	to	be	implemented.	They	should	be	guided	by	the	clinical	content,	encoded	
using	ontologies	developed	under	an	overarching	ontological	framework.	
	

	
In	 addition	 to	 the	 above	 recommendations,	 none	of	 them	will	 succeed	without	 appropriate	open-
source	tools.	The	existence	of	reference	implementations	like	in	the	case	of	the	FDPs	can	facilitate	the	
adoption	of	the	corresponding	technology.	
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4 Conclusions	
This	deliverable	summarizes	project	experiences	regarding	data	sharing	and	puts	them	in	the	context	
of	state	of	the	art	work.	It	proposes	a	list	of	recommendations	for	data	sharing	that	can	serve	as	a	basis	
for	future	projects	and	inform	policy	makers,	industry	and	key	stakeholders	for	future	developments	
and	research	directions.	

The	described	work	will	be	further	revised	and	submitted	to	a	medical	informatics	journal.		
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