PRECISE4Q

PREDICTIVE MODELLING IN STROKE

PRECISE4Q sets out to minimise the burden of stroke for the individual and society through precision medicine.

CONCEPT

Personalised stroke treatment enabled by multi-dimensional data-driven predictive simulation computer models.

Heterogeneous data integration from multidisciplinary sources: genomics, microbiomics, biochemical imaging including, as well as lifestyle, gender, economic and workstyle factors.

DIGITAL STROKE PATIENT PLATFORM

INTEROPERABLE DATA MANAGEMENT AND HARMONISATION MODULE

PREVENTION

STROKE RISK CDSS TREATMENT

OUTCOME / RE-STROKE RISK CDSS REHABILITATION

PRECISE4Q REHAB PROGRAMME CDSS REINTEGRATION

SOCIO-ECONOMIC PLANNING TOOL

EUROPE-STROKE

MODELLING
PLATFORM FOR
EUROPEAN OPEN
STROKE RESEARCH

CLINICAL PRACTICE

PRECISE4Q will develop clinical decision support systems (CDSSs) for stroke, based on validated predictive models. The CDSSs will address stroke patients' needs at four stages: prevention, acute treatment, rehabilitation and reintegration. They will be available "standalone" as well as part of a comprehensive Digital Stroke Patient Platform.

STROKE RESEARCH

The models and data ecosystem of the Digital Stroke Patient Platform will double as a European Modelling Platform for Open Stroke Research (EUROPE-STROKE). This service will enable the collection and integration of large scale data support for both hospitals and the research community to advance precision medicine in stroke.

IN A NUTSHELL...

WWW.PRECISE4Q.EU

@PRECISE4Q

PRECISE4Q@empirica.com

Duration May 2018 - April 2022 (48 months)

Budget €5.9 Million

Charité - Universitätsmedizin Berlin Coordinator

12 partners, 8 countries Consortium

